Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effects of climate and corrosion on concrete behaviour

    Access Status
    Fulltext not available
    Authors
    Ismail, Mohamed
    Egba, E.
    Date
    2017
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Ismail, M. and Egba, E. 2017. Effects of climate and corrosion on concrete behaviour.
    Source Title
    AIP Conference Proceedings
    DOI
    10.1063/1.5011507
    ISBN
    9780735415911
    School
    Curtin Malaysia
    URI
    http://hdl.handle.net/20.500.11937/72728
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Author(s). Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

    Related items

    Showing items related by title, author, creator and subject.

    • Influence of natural climate curing treatment on corrosion activity of reinforced concrete
      Egba, E.; Bakhary, N.; Ismail, Mohamed (2016)
      Objective: This paper explained the experimental investigation conducted on reinforced concrete specimens to ascertain the effect of natural climate curing treatment on the corrosion activity. Methods/Statistical Analysis: ...
    • Shear and bond behaviour of reinforced fly ash-based geopolymer concrete beams
      Chang, Ee Hui (2009)
      Concrete is by far the most widely used construction material worldwide in terms of volume, and so has a huge impact on the environment, with consequences for sustainable development. Portland cement is one of the most ...
    • Bond Strengths of Geopolymer and Cement Concretes
      Sarker, Prabir (2010)
      Geopolymer is an inorganic alumino-silicate product that shows good bonding properties. Geopolymer binders are used together with aggregates to produce geopolymer concrete which is an ideal building material for ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.