Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem

    Access Status
    Fulltext not available
    Authors
    Gao, Y.
    Faris, J.
    Liu, Z.
    Kim, Y.
    Syme, Robert
    Oliver, Richard
    Xu, S.
    Friesen, T.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Gao, Y. and Faris, J. and Liu, Z. and Kim, Y. and Syme, R. and Oliver, R. and Xu, S. et al. 2015. Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem. Molecular Plant-Microbe Interactions. 28 (5): pp. 615-625.
    Source Title
    Molecular Plant-Microbe Interactions
    DOI
    10.1094/MPMI-12-14-0396-R
    ISSN
    0894-0282
    School
    Centre for Crop Disease Management
    URI
    http://hdl.handle.net/20.500.11937/7286
    Collection
    • Curtin Research Publications
    Abstract

    Parastagonospora nodorum is a necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) (formerly Stagonospora nodorum blotch) on wheat. P. nodorum produces necrotrophic effectors (NE) that are recognized by dominant host sensitivity gene products resulting in disease development. The NE-host interaction is critical to inducing NE-triggered susceptibility (NETS). To date, seven NE-host sensitivity gene interactions, following an inverse gene-for-gene model, have been identified in the P. nodorum-wheat pathosystem. Here, we used a wheat mapping population that segregated for sensitivity to two previously characterized interactions (SnTox1-Snn1 and SnTox3-Snn3-B1) to identify and characterize a new interaction involving the NE designated SnTox6 and the host sensitivity gene designated Snn6. SnTox6 is a small secreted protein that induces necrosis on wheat lines harboring Snn6. Sensitivity to SnTox6, conferred by Snn6, was light-dependent and was shown to underlie a major disease susceptibility quantitative trait locus (QTL). No other QTL were identified, even though the P. nodorum isolate used in this study harbored both the SnTox1 and SnTox3 genes. Reverse transcription-polymerase chain reaction showed that the expression of SnTox1 was not detectable, whereas SnTox3 was expressed and, yet, did not play a significant role in disease development. This work expands our knowledge of the wheat-P. nodorum interaction and further establishes this system as a model for necrotrophic specialist pathosystems.

    Related items

    Showing items related by title, author, creator and subject.

    • Differential effector gene expression underpins epistasis in a plant fungal disease.
      Phan, Huyen; Rybak, K.; Furuki, Eiko; Breen, S.; Solomon, P.; Oliver, Richard; Tan, Kar-Chun (2016)
      Fungal effector-host sensitivity gene interactions play a key role in determining the outcome of septoria nodorum blotch disease (SNB) caused by Parastagonospora nodorum on wheat. The pathosystem is complex and mediated ...
    • The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1
      Liu, Z.; Zhang, Z.; Faris, J.; Oliver, Richard; Syme, Robert; McDonald, M.; McDonald, B.; Solomon, P.; Lu, S.; Shelver, W.; Xu, S.; Friesen, T. (2012)
      The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the ...
    • Characterization of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene
      Friesen, T.; Zhang, Z.; Solomon, P.; Oliver, Richard; Faris, J. (2008)
      Recent work suggests that the Stagonospora nodorum-wheat pathosystem is controlled by host-selective toxins (HSTs; SnToxA, SnTox1, and SnTox2) that interact directly or indirectly with dominant host genes (Tsn1, Snn1, and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.