Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A FIB-STEM Study of Strontium Segregation and Interface Formation of Directly Assembled La0.6Sr0.4Co0.2Fe0.8O3.delta Cathode on Y2O3-ZrO2 Electrolyte of Solid Oxide Fuel Cells

    Access Status
    Fulltext not available
    Authors
    He, Shuai
    Saunders, M.
    Chen, K.
    Gao, H.
    Suvorova, A.
    Rickard, William
    Quadir, Zakaria
    Cui, C.
    Jiang, San Ping
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    He, S. and Saunders, M. and Chen, K. and Gao, H. and Suvorova, A. and Rickard, W. and Quadir, Z. et al. 2018. A FIB-STEM Study of Strontium Segregation and Interface Formation of Directly Assembled La0.6Sr0.4Co0.2Fe0.8O3.delta Cathode on Y2O3-ZrO2 Electrolyte of Solid Oxide Fuel Cells. Journal of the Electrochemical Society. 165 (7): pp. F417-F429.
    Source Title
    Journal of the Electrochemical Society
    DOI
    10.1149/2.0151807jes
    ISSN
    0013-4651
    School
    Fuels and Energy Technology Institute
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150102025
    http://purl.org/au-research/grants/arc/DP150102044
    http://purl.org/au-research/grants/arc/DP180100568
    http://purl.org/au-research/grants/arc/DP180100731
    URI
    http://hdl.handle.net/20.500.11937/72900
    Collection
    • Curtin Research Publications
    Abstract

    Electrode/electrolyte interface plays a critical role in the performance and stability of solid oxide fuel cells (SOFCs). Here, interface formation, Sr segregation and reaction of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode on barrier-layer-free Y2O3-ZrO2 (YSZ) electrolyte are studied at 1000 mAcm−2 and 750°C using focused ion beam and scanning transmission electron microscopy (FIB-STEM) techniques. The results indicate that polarization promotes the formation of LSCF/YSZ interface with a high level of periodicity and symmetry but no amorphous phases or solid solutions. Further polarization induces the Sr segregation and diffusion toward the LSCF/YSZ interface, forming Sr rich layer (SRL, primarily SrO) at LSCF and YSZ interface. Segregated Sr species are highly mobile and deposition of SrO occurs at the LSCF/YSZ interface as well as on the YSZ electrolyte surface. The reaction between SRL and YSZ is fast, forming SrZrO3 secondary phase. The growth of SrZrO3 phase at the interface are affected by the crystallography lattice plane orientation of the YSZ electrolyte, forming a coherence interface between SrZrO3 and YSZ electrolyte. Further polarization accelerates Sr segregation and formation of the SrZrO3 reaction layer, leading to the disintegration of LSCF structure at the interface. The results indicate that chemical reaction between LSCF and YSZ occurs at 750°C under polarization conditions, kinetically induced by the segregated SrO at the interface and on the YSZ electrolyte surface.

    Related items

    Showing items related by title, author, creator and subject.

    • Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
      Chen, K.; He, S.; Li, N.; Cheng, Y.; Ai, N.; Chen, M.; Rickard, William; Zhang, T.; Jiang, S. (2018)
      © 2017 Elsevier B.V. La 0.6 Sr 0.2 Co 0.2 Fe 0.8 O 3-d (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and ...
    • Polarization-Induced Interface and Sr Segregation of in Situ Assembled La0.6Sr0.4Co0.2Fe0.8O3−δ Electrodes on Y2O3–ZrO2 Electrolyte of Solid Oxide Fuel Cells
      Chen, K.; Li, N.; Ai, N.; Cheng, Yi; Rickard, W.; Jiang, S. (2016)
      © 2016 American Chemical Society.Application of cobaltite-based electrodes such as La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) on Y2O3-ZrO2 (YSZ) electrolyte in solid oxide fuel cells (SOFCs) generally requires the use of a doped ...
    • Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells
      Ai, N.; He, S.; Li, N.; Zhang, Qi; Rickard, William; Chen, K.; Zhang, T.; Jiang, San Ping (2018)
      Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.