Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Geochemical property modelling of a potential shale reservoir in the Canning Basin (Western Australia), using Artificial Neural Networks and geostatistical tools

    Access Status
    Fulltext not available
    Authors
    Johnson, L.
    Rezaee, M. Reza
    Kadkhodaie, Ali
    Smith, G.
    Yu, H.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Johnson, L. and Rezaee, M.R. and Kadkhodaie, A. and Smith, G. and Yu, H. 2018. Geochemical property modelling of a potential shale reservoir in the Canning Basin (Western Australia), using Artificial Neural Networks and geostatistical tools. Computers & Geosciences. 120: pp. 73-81.
    Source Title
    Computers & Geosciences
    DOI
    10.1016/j.cageo.2018.08.004
    ISSN
    0098-3004
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/73055
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 Elsevier Ltd In underexplored sedimentary basins, understanding of the geochemical property distribution is paramount to a successful exploration campaign. This is traditionally obtained through the routine laboratory pyrolysis experiments. Compared to Machine Learning approaches, bulk geochemical analysis is relatively more time consuming, more expensive and generally provides property distribution in a lower resolution. This study has used the Artificial Neural Networks approach to predict continuous geochemical logs in wells with no or limited geochemical information. The neural network was trained with the Levenberg-Marquardt training algorithm, based on the established relationships between the typical well logs with laboratory measured geochemical data. A total of 96 data points from the Goldwyer shale of the Canning Basin, WA were used to train the network, with an accuracy of greater than 75% R2 values for the training, test and validation data in all models. The predicted, continuous geochemical logs have a good agreement with the laboratory measured geochemical data, particularly the TOC and S2 logs. Subsequently, these optimised geochemical logs are used as the input into a petrophysical property model to predict the organic matter distribution across the Broome Platform of the Canning Basin. This revealed the potential geochemical sweet spots, with higher free oil yield (S1), source rock potential (S2) and organic content (TOC) towards the north-western part of the sub-basin. The kerogen type distribution, on the other hand shows that in the south-eastern part of the sub basin, the shales yield Type II to Type III kerogen type, while they are predominantly Type III in the north-western part of the study area.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimum use of the flexible pavement condition indicators in pavement management system
      Shiyab, Adnan M S H (2007)
      This study aimed at investigating the current practices and methods adopted by roads agencies around the world with regard to collection, analysis and utilization of the data elements pertaining to the main pavement ...
    • Thermal History and Deep Overpressure Modelling in the Northern Carnarvon Basin, North West Shelf, Australia
      He, Sheng (2002)
      The Northern Carnarvon Basin is the richest petroleum province in Australia. About 50 gas/condensate and oil fields, associated mainly with Jurassic source rocks, have been discovered in the sub-basins and on the Rankin ...
    • Factors controlling the abundance and carbon isotopic composition of land-plant derived compounds in crude oils.
      Murray, Andrew P. (1998)
      This thesis describes a study in petroleum geochemistry and specifically of the application of Land-plant derived hydrocarbons to elucidating source matter type, depositional environment and thermal maturity of crude oils. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.