Geochemical property modelling of a potential shale reservoir in the Canning Basin (Western Australia), using Artificial Neural Networks and geostatistical tools
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Elsevier Ltd In underexplored sedimentary basins, understanding of the geochemical property distribution is paramount to a successful exploration campaign. This is traditionally obtained through the routine laboratory pyrolysis experiments. Compared to Machine Learning approaches, bulk geochemical analysis is relatively more time consuming, more expensive and generally provides property distribution in a lower resolution. This study has used the Artificial Neural Networks approach to predict continuous geochemical logs in wells with no or limited geochemical information. The neural network was trained with the Levenberg-Marquardt training algorithm, based on the established relationships between the typical well logs with laboratory measured geochemical data. A total of 96 data points from the Goldwyer shale of the Canning Basin, WA were used to train the network, with an accuracy of greater than 75% R2 values for the training, test and validation data in all models. The predicted, continuous geochemical logs have a good agreement with the laboratory measured geochemical data, particularly the TOC and S2 logs. Subsequently, these optimised geochemical logs are used as the input into a petrophysical property model to predict the organic matter distribution across the Broome Platform of the Canning Basin. This revealed the potential geochemical sweet spots, with higher free oil yield (S1), source rock potential (S2) and organic content (TOC) towards the north-western part of the sub-basin. The kerogen type distribution, on the other hand shows that in the south-eastern part of the sub basin, the shales yield Type II to Type III kerogen type, while they are predominantly Type III in the north-western part of the study area.
Related items
Showing items related by title, author, creator and subject.
-
Shiyab, Adnan M S H (2007)This study aimed at investigating the current practices and methods adopted by roads agencies around the world with regard to collection, analysis and utilization of the data elements pertaining to the main pavement ...
-
He, Sheng (2002)The Northern Carnarvon Basin is the richest petroleum province in Australia. About 50 gas/condensate and oil fields, associated mainly with Jurassic source rocks, have been discovered in the sub-basins and on the Rankin ...
-
Murray, Andrew P. (1998)This thesis describes a study in petroleum geochemistry and specifically of the application of Land-plant derived hydrocarbons to elucidating source matter type, depositional environment and thermal maturity of crude oils. ...