Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2014 Elsevier B.V. Herein, a series of composite membranes based on sulfonated poly(ether ether ketone) (SPEEK) and imidazole-type ionic liquid (ImIL) are prepared through IL-swollen method as anhydrous electrolytes for fuel cell. The IL loading amount is accurately controlled by preparation conditions (e.g., ultrasonic power, treatment temperature, and treatment time). The influence of IL on physicochemical properties of composite membrane is systematically investigated. The IL is enriched into the ionic clusters of SPEEK matrix driven by electrostatic attractions, thereby broadening them to form inter-connected channels. IL provides anhydrous hoping sites and low-energy-barrier paths of imidazole-sulfonic acid pairs to composite membrane. Through the channels, these sites form facile pathways and significantly enhance the anhydrous conductivity of composite membrane. Particularly, the composite membrane containing 43% IL achieves a 52 times higher conductivity (9.3mScm-1) than that of the control membrane (0.179mScm-1) at 140°C. Increasing IL loading amount will further elevate the anhydrous conductivity. The dynamic IL release and the concomitant conductivity of composite membrane are investigated. Moreover, another team of composite membranes are prepared by solution casting method for exploring the influence of preparation method on the microstructure, IL retention ability, and conductivity of IL-incorporated membrane.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, H.; Wu, W.; Li, Y.; Liu, Y.; Wang, J.; Zhang, B.; Liu, Jian (2015)© 2015 Elsevier B.V. All rights reserved. Herein, novel composite membranes are prepared by embedding methacrylic acid polyelectrolyte microcapsules (PMCs) into sulfonated poly(ether ether ketone) (SPEEK) matrix, followed ...
-
He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, Jian (2014)A new approach to the facile preparation of anhydrous proton exchange membrane (PEM) enabled by artificial acid-base pairs is presented herein. Inspired by the bioadhesion of mussel, polydopamine-modified graphene oxide ...
-
Liu, Y.; Wang, J.; Zhang, H.; Ma, C.; Liu, Jian; Cao, S.; Zhang, X. (2014)In this study, sulfonated graphene oxide (SGO) nanosheets with controllable sulfonic acid group loading are synthesized via the facile distillation- precipitation polymerization, and then incorporated into chitosan (CS) ...