Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia
dc.contributor.author | Knibbs, L. | |
dc.contributor.author | Van Donkelaar, A. | |
dc.contributor.author | Martin, R. | |
dc.contributor.author | Bechle, M. | |
dc.contributor.author | Brauer, M. | |
dc.contributor.author | Cohen, D. | |
dc.contributor.author | Cowie, C. | |
dc.contributor.author | Dirgawati, M. | |
dc.contributor.author | Guo, Y. | |
dc.contributor.author | Hanigan, I. | |
dc.contributor.author | Johnston, F. | |
dc.contributor.author | Marks, G. | |
dc.contributor.author | Marshall, J. | |
dc.contributor.author | Pereira, Gavin | |
dc.contributor.author | Jalaludin, B. | |
dc.contributor.author | Heyworth, J. | |
dc.contributor.author | Morgan, G. | |
dc.contributor.author | Barnett, A. | |
dc.date.accessioned | 2018-12-13T09:15:27Z | |
dc.date.available | 2018-12-13T09:15:27Z | |
dc.date.created | 2018-12-12T02:46:30Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Knibbs, L. and Van Donkelaar, A. and Martin, R. and Bechle, M. and Brauer, M. and Cohen, D. and Cowie, C. et al. 2018. Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia. Environmental Science and Technology. 52 (21): pp. 12445-12455. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/73137 | |
dc.identifier.doi | 10.1021/acs.est.8b02328 | |
dc.description.abstract |
Australia has relatively diverse sources and low concentrations of ambient fine particulate matter (<2.5 µm, PM2.5). Few comparable regions are available to evaluate the utility of continental-scale land-use regression (LUR) models including global geophysical estimates of PM2.5, derived by relating satellite-observed aerosol optical depth to ground-level PM2.5 ("SAT-PM2.5"). We aimed to determine the validity of such satellite-based LUR models for PM2.5 in Australia. We used global SAT-PM2.5 estimates (~10 km grid) and local land-use predictors to develop four LUR models for year-2015 (two satellite-based, two nonsatellite-based). We evaluated model performance at 51 independent monitoring sites not used for model development. An LUR model that included the SAT-PM2.5 predictor variable (and six others) explained the most spatial variability in PM2.5 (adjusted R2 = 0.63, RMSE (µg/m3 [%]): 0.96 [14%]). Performance decreased modestly when evaluated (evaluation R2 = 0.52, RMSE: 1.15 [16%]). The evaluation R2 of the SAT-PM2.5 estimate alone was 0.26 (RMSE: 3.97 [56%]). SAT-PM2.5 estimates improved LUR model performance, while local land-use predictors increased the utility of global SAT-PM2.5 estimates, including enhanced characterization of within-city gradients. Our findings support the validity of continental-scale satellite-based LUR modeling for PM2.5 exposure assessment in Australia. | |
dc.publisher | American Chemical Society | |
dc.title | Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia | |
dc.type | Journal Article | |
dcterms.source.volume | 52 | |
dcterms.source.number | 21 | |
dcterms.source.startPage | 12445 | |
dcterms.source.endPage | 12455 | |
dcterms.source.issn | 0013-936X | |
dcterms.source.title | Environmental Science and Technology | |
curtin.department | School of Public Health | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |