Show simple item record

dc.contributor.authorKnibbs, L.
dc.contributor.authorVan Donkelaar, A.
dc.contributor.authorMartin, R.
dc.contributor.authorBechle, M.
dc.contributor.authorBrauer, M.
dc.contributor.authorCohen, D.
dc.contributor.authorCowie, C.
dc.contributor.authorDirgawati, M.
dc.contributor.authorGuo, Y.
dc.contributor.authorHanigan, I.
dc.contributor.authorJohnston, F.
dc.contributor.authorMarks, G.
dc.contributor.authorMarshall, J.
dc.contributor.authorPereira, Gavin
dc.contributor.authorJalaludin, B.
dc.contributor.authorHeyworth, J.
dc.contributor.authorMorgan, G.
dc.contributor.authorBarnett, A.
dc.date.accessioned2018-12-13T09:15:27Z
dc.date.available2018-12-13T09:15:27Z
dc.date.created2018-12-12T02:46:30Z
dc.date.issued2018
dc.identifier.citationKnibbs, L. and Van Donkelaar, A. and Martin, R. and Bechle, M. and Brauer, M. and Cohen, D. and Cowie, C. et al. 2018. Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia. Environmental Science and Technology. 52 (21): pp. 12445-12455.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/73137
dc.identifier.doi10.1021/acs.est.8b02328
dc.description.abstract

Australia has relatively diverse sources and low concentrations of ambient fine particulate matter (<2.5 µm, PM2.5). Few comparable regions are available to evaluate the utility of continental-scale land-use regression (LUR) models including global geophysical estimates of PM2.5, derived by relating satellite-observed aerosol optical depth to ground-level PM2.5 ("SAT-PM2.5"). We aimed to determine the validity of such satellite-based LUR models for PM2.5 in Australia. We used global SAT-PM2.5 estimates (~10 km grid) and local land-use predictors to develop four LUR models for year-2015 (two satellite-based, two nonsatellite-based). We evaluated model performance at 51 independent monitoring sites not used for model development. An LUR model that included the SAT-PM2.5 predictor variable (and six others) explained the most spatial variability in PM2.5 (adjusted R2 = 0.63, RMSE (µg/m3 [%]): 0.96 [14%]). Performance decreased modestly when evaluated (evaluation R2 = 0.52, RMSE: 1.15 [16%]). The evaluation R2 of the SAT-PM2.5 estimate alone was 0.26 (RMSE: 3.97 [56%]). SAT-PM2.5 estimates improved LUR model performance, while local land-use predictors increased the utility of global SAT-PM2.5 estimates, including enhanced characterization of within-city gradients. Our findings support the validity of continental-scale satellite-based LUR modeling for PM2.5 exposure assessment in Australia.

dc.publisherAmerican Chemical Society
dc.titleSatellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia
dc.typeJournal Article
dcterms.source.volume52
dcterms.source.number21
dcterms.source.startPage12445
dcterms.source.endPage12455
dcterms.source.issn0013-936X
dcterms.source.titleEnvironmental Science and Technology
curtin.departmentSchool of Public Health
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record