Non-Gaussian multivariate modeling of plug-in electric vehicles load demand
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper proposes an organized stochastic methodology to model the power demand of plug-in electric vehicles (PEVs) which can be embedded into probabilistic distribution system planning. Time schedules as well as traveling and refueling information of a set of commuter vehicles in Tehran are utilized as the input dataset. In order to generate the required synthetic data, the correlation structure of the aforesaid random variables is taken into account using a multivariate student's t function. Afterwards, a Monte Carlo based stochastic simulation is provided to extract the initial state-of-charge of batteries. Further, a non-Gaussian probabilistic decision making algorithm is developed that accurately infers whether the PEVs charging should take place every day or not. Then, through presenting a state transition model to describe the charging profile of a PEV battery, hourly demand distributions of the PEVs are derived. The obtained distributions can be used to generate the random samples required in probabilistic planning problems. Eventually, the extracted distributions are employed to estimate demand profile of a fleet that can be efficiently utilized in various applications. © 2014 Elsevier Ltd. All rights reserved.
Related items
Showing items related by title, author, creator and subject.
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Tan, Wee Kwan; Hilmola, O.; Binh, D. (2016)Purpose – Demand for retail transportation is typically volatile, and it is driven by the end of period (month) spiky deliveries. This is especially the case in emerging markets. The purpose of this paper is to examine ...
-
Heitz, Anna (2002)The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; ...