Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Development of a novel polyethersulfone ultrafiltration membrane with antibacterial activity and high flux containing halloysite nanotubes loaded with lysozyme

    Access Status
    Fulltext not available
    Authors
    Zhao, Q.
    Liu, C.
    Liu, Jian
    Zhang, Y.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhao, Q. and Liu, C. and Liu, J. and Zhang, Y. 2015. Development of a novel polyethersulfone ultrafiltration membrane with antibacterial activity and high flux containing halloysite nanotubes loaded with lysozyme. RSC Advances. 5 (48): pp. 38646-38653.
    Source Title
    RSC Advances
    DOI
    10.1039/c5ra05062f
    ISSN
    2046-2069
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/73169
    Collection
    • Curtin Research Publications
    Abstract

    In this study, halloysite nanotubes (HNTs) were used to immobilize lysozyme via a covalent binding reaction. Immobilized lysozyme (HNTs-Ly) was then added to a polyethersulfone (PES) polymer solution to prepare hybrid antibacterial ultrafiltration membranes via classic phase inversion. The results showed that the surface hydrophilicity and the water flux of the hybrid membranes were significantly improved after adding HNTs-Ly. When the content of HNTs-Ly was 3.0 wt%, the water flux of the resultant membranes could achieve values as high as 400 L m-2h-1and maintain higher rejections for PEG 20000 (69%) and PVA 30000-70000 (99.6%). The tensile strength and the elongation at the break of the hybrid membranes were increased after adding HNTs-Ly, which revealed that the mechanical strength of the membranes was also enhanced. Moreover, the hybrid membrane showed a good antibacterial activity against Gram-negative bacteria (E. coli) with a high bacteriostasis rate of 63%. This journal is

    Related items

    Showing items related by title, author, creator and subject.

    • Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP
      Zhu, J.; Guo, N.; Zhang, Y.; Yu, L.; Liu, Jian (2014)
      Sodium 4-styrenesulfonate was grafted onto the surfaces of halloysite nanotubes (HNTs) via surface-initiated atom transfer radical polymerization (SI-ATRP), and then negatively charged nanofiltration (NF) membranes were ...
    • Preparation and antifouling property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with MPC via RATRP method
      Wang, Z.; Wang, H.; Liu, Jian; Zhang, Y. (2014)
      Polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with 2-methacryloyloxyethyl phosphorylcholine (HNTs-MPC) was prepared via phase inversion method for the purpose of enhancing the ...
    • Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification
      Wang, Y.; Zhu, J.; Dong, G.; Zhang, Y.; Guo, N.; Liu, Jian (2015)
      © 2015 Elsevier B.V. Abstract First, styrene was grafted onto the surface of halloysite nanotubes (HNTs) via distillation-precipitation polymerization and the above modified HNTs were sulfonated by concentrated sulfuric ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.