Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Predicting Forearm Physical Exposures During Computer Work Using Self-Reports, Software-Recorded Computer Usage Patterns, and Anthropometric and Workstation Measurements

    Access Status
    Fulltext not available
    Authors
    Huysmans, M.
    Eijckelhof, B.
    Bruno Garza, J.
    Coenen, Pieter
    Blatter, B.
    Johnson, P.
    Van Dieën, J.
    van der Beek, A.
    Dennerlein, J.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Huysmans, M. and Eijckelhof, B. and Bruno Garza, J. and Coenen, P. and Blatter, B. and Johnson, P. and Van Dieën, J. et al. 2018. Predicting Forearm Physical Exposures During Computer Work Using Self-Reports, Software-Recorded Computer Usage Patterns, and Anthropometric and Workstation Measurements. Annals of work exposures and health. 62 (1): pp. 124-137.
    Source Title
    Annals of work exposures and health
    DOI
    10.1093/annweh/wxx092
    ISSN
    2398-7308
    School
    School of Physiotherapy and Exercise Science
    URI
    http://hdl.handle.net/20.500.11937/73217
    Collection
    • Curtin Research Publications
    Abstract

    © The Author(s) 2017. Objectives: Alternative techniques to assess physical exposures, such as prediction models, could facilitate more efficient epidemiological assessments in future large cohort studies examining physical exposures in relation to work-related musculoskeletal symptoms.The aim of this study was to evaluate two types of models that predict arm-wrist-hand physical exposures (i.e. muscle activity, wrist postures and kinematics, and keyboard and mouse forces) during computer use, which only differed with respect to the candidate predicting variables; (i) a full set of predicting variables, including self-reported factors, software-recorded computer usage patterns, and worksite measurements of anthropometrics and workstation set-up (full models); and (ii) a practical set of predictingvariables, only including the self-reported factors and software-recorded computer usage patterns, that are relatively easy to assess (practical models). Methods: Prediction models were build using data from a field study among 117 office workers who were symptom-free at the time of measurement. Arm-wrist-hand physical exposures were measured for approximately two hours while workers performed their own computer work. Each worker’s anthropometry and workstation set-up were measured by an experimenter, computer usage patterns were recorded using software and self-reported factors (including individual factors, job characteristics, computer work behaviours, psychosocial factors, workstation set-up characteristics, and leisure-time activities) were collected by an online questionnaire. We determined the predictive quality of the models in terms of R2and root mean squared (RMS) values and exposure classification agreement to low-, medium-, and high-exposure categories (in the practical model only). Results: The full models had R2values that ranged from 0.16 to 0.80, whereas for the practical models values ranged from 0.05 to 0.43. Interquartile ranges were not that different for the two models, indicating that only for some physical exposures the full models performed better. Relative RMS errors ranged between 5% and 19% for the full models, and between 10% and 19% for the practical model. When the predicted physical exposures were classified into low, medium, and high, classification agreement ranged from 26% to 71%. Conclusion: The full prediction models, based on self-reported factors, software-recorded computer usage patterns, and additional measurements of anthropometrics and workstation set-up, show a better predictive quality as compared to the practical models based on self-reported factors and recorded computer usage patterns only. However, predictive quality varied largely across different arm-wrist-hand exposure parameters. Future exploration of the relation between predicted physical exposure and symptoms is therefore only recommended for physical exposures that can be reasonably well predicted.

    Related items

    Showing items related by title, author, creator and subject.

    • Musculoskeletal outcomes in children using computers : a model representing the relationships between user correlates, computer exposure and musculoskeletal outcomes
      Harris, Courtenay (2010)
      The etiology of musculoskeletal outcomes associated with the use of information technology (IT) has predominately been defined by studies of adults in their work environments. Theories explaining the causation of work ...
    • Breastfeeding and perceptions of breast shape changes in Australian and Japanese women
      Inoue, Madoka (2012)
      This thesis examines infant feeding practices, including knowledge and attitudes towards breastfeeding, factors that influence the duration of breastfeeding, and breastfeeding outcomes in relation to postpartum women’s ...
    • Teacher and student factors related to the use of ICT in upper primary school
      Cooke, Audrey (2012)
      The use of Information and Communication Technology (ICT) in education has changed in many ways since computers were first installed in the classroom. Changes have reflected what ICT has been made available in the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.