Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2018 Elsevier B.V. Supported single atom catalysts (SACs), emerging as a new class of catalytic materials, have been attracting increasing interests. Here we developed a Ni SAC on microwave exfoliated graphene oxide (Ni-N-MEGO) to achieve single atom loading of ~6.9 wt%, significantly higher than previously reported SACs. The atomically dispersed Ni atoms, stabilized by coordination with nitrogen, were found to be predominantly anchored along the edges of nanopores (< 6 nm) using a combination of X-ray absorption spectroscopy (XAS) and aberration-corrected scanning transmission electron microscopy (AC-STEM). The Ni-N-MEGO exhibits an onset overpotential of 0.18 V, and a current density of 53.6 mA mg-1 at overpotential of 0.59 V for CO2 reduction reaction (CO2RR), representing one of the best non-precious metal SACs reported so far in the literature. Density functional theory (DFT) calculations suggest that the electrochemical CO2-to-CO conversion occurs more readily on the edge-anchored unsaturated nitrogen coordinated Ni single atoms that lead to enhanced activity toward CO2RR.
Related items
Showing items related by title, author, creator and subject.
-
Glasser, Leslie (2022)In part I of this series we established optimised sum values, for each of the chemical elements, of formula volumes, of absolute entropies, and of constant pressure heat capacities, together with their temperature ...
-
Zhao, Shiyong; Wang, T.; Zhou, G.; Zhang, L.; Lin, C.; Veder, Jean-Pierre ; Johannessen, B.; Saunders, M.; Yin, L.; Liu, C.; De Marco, Roland ; Yang, S.Z.; Zhang, Q.; Jiang, San Ping (2020)Single-atom catalysts (SACs) have attracted much attentions due to the advantages of high catalysis efficiency and selectivity. However, the controllable and efficient synthesis of SACs remains a significant challenge. ...
-
Glasser, Leslie (2022)In an earlier simple “group contribution” method, molar volumes of organic and inorganic materials were predicted by summing optimised single atom values weighted according to the molecular formula. We here first revisit ...