Minimizing Completion Time in Wireless Networks with In-Band Full Duplex Links
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
OAPA One approach to improve network capacity in future wireless networks is to deploy Access Points (APs) in a dense manner and employ a controller to manage these APs. Another innovation is to equip nodes with an In-Band Full- Duplex (IBFD) radio, which allows them to transmit and receive simultaneously over the same frequency band. A key challenge, however, is interference. To this end, a link scheduler plays a critical role in ensuring the benefits of dense APs deployment and IBFD are not negated by severe interference. Henceforth, this paper proposes three centralized algorithms that aim to drain a given set of packets from links in minimum time. We have compared these algorithms against a schedule where links transmit independently, and an algorithm that schedules links at slot boundaries. We studied the impact of varying node densities, transmission power and Signal-to-Interference-plus-Noise Ratio (SINR) thresholds on the link schedule. Our results show the overall completion time can be reduced by 68% as compared to scheduling links individually. Moreover, our algorithms reduce the completion time by 13% as compared to scheduling links on a slot-by-slot basis.
Related items
Showing items related by title, author, creator and subject.
-
Wang, H.; Chin, K.; Soh, Sie Teng; Raad, R. (2015)The capacity of Wireless Mesh Networks (WMNs) has significantly increased with the recent addition of multiple transmit (Tx) and receive (Rx) (MTR) capability or smart antennas. This increase however is predicated on an ...
-
Wang, H.; Chin, K.; Soh, Sieteng; Raad, R. (2015)The capacity of Wireless Mesh Networks (WMNs) has significantly increased with the recent addition of multiple transmit (Tx) and receive (Rx) (MTR) capability or smart antennas. This increase however is predicated on an ...
-
Wang, H.; Chin, K.; Soh, Sie Teng; Raad, R. (2015)The capacity of Wireless Mesh Networks (WMNs) has significantly increased with the recent addition of multiple transmit (Tx) and receive (Rx) (MTR) capability or smart antennas. This increase however is predicated on an ...