Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Oxygen isotope analysis of olivine by ion microprobe: Matrix effects and applications to a serpentinised dunite

    Access Status
    Fulltext not available
    Authors
    Scicchitano, M.
    Rubatto, D.
    Hermann, J.
    Majumdar, A.
    Putnis, Andrew
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Scicchitano, M. and Rubatto, D. and Hermann, J. and Majumdar, A. and Putnis, A. 2018. Oxygen isotope analysis of olivine by ion microprobe: Matrix effects and applications to a serpentinised dunite. Chemical Geology. 499: pp. 126-137.
    Source Title
    Chemical Geology
    DOI
    10.1016/j.chemgeo.2018.09.020
    ISSN
    0009-2541
    School
    The Institute for Geoscience Research (TIGeR)
    URI
    http://hdl.handle.net/20.500.11937/73340
    Collection
    • Curtin Research Publications
    Abstract

    In order to resolve inter- and intracrystalline oxygen isotopic heterogeneities in olivine crystals encountered in mantle peridotites, basaltic lavas, chondritic meteorites and metamorphic rocks, in situ techniques such as ion microprobes are needed. Accurate ion microprobe analysis requires not only well-characterised reference materials, but also calibration of the matrix bias for compositional variations within a given mineral. We investigated matrix bias effects related to Mg/Fe variations in olivine during in situ analysis of oxygen isotopes with sensitive high-resolution ion microprobe (SHRIMP) by analysing chemically homogenous olivine samples with forsterite contents in the range Fo74–Fo100. The isotopic measurements were calibrated against San Carlos olivine (SCO; Fo91). The repeatability achieved for all samples was ±0.21–0.50‰ (standard deviation, SD, at 95% confidence level, c.l.) comparable to that of San Carlos olivine (±0.31–0.48‰ SD at 95% c.l.). A matrix bias up to ~-2.0‰ was observed in olivine with forsterite content above 92 mol%, conversely to what has been reported for Cameca instruments. The relationship between the magnitude of matrix bias and fayalite content (mol%) is described by the quadratic function: BiasFa=-0.0062Fa2+0.233Fa-1.60 The correction scheme for the matrix bias was applied to chemically zoned olivine crystals from a partly serpentinised dunite from the Archean Nuasahi massif (eastern India). Olivine cores (Fo92) preserve their typical mantle-like signature with a d18O value of 5.16 ± 0.30‰ (s at 95% c.l.). During a low temperature stage of serpentinisation, olivine transformed to lizardite1+ brucite + magnetite. Olivine rims (Fo98; d18O = 1.92 ± 0.60‰ s at 95% c.l.) and the surrounding lizardite2(4.87 ± 0.53‰ s at 95% c.l.), formed during a later stage of rock-fluid interaction, are in isotopic equilibrium at ~405–430 °C, with a fluid having a d18O of ~5.3–6.9‰. Evolved seawater enriched in18O by isotopic exchange during infiltration could have been responsible for this later serpentinisation stage observed in the Nuasahi massif. The concomitant analysis of oxygen isotopes at the microscale in both olivine and serpentine represents a powerful tool to constrain the nature and source(s) of serpentinising fluid(s) as well as the temperature of serpentinisation.

    Related items

    Showing items related by title, author, creator and subject.

    • Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere
      Evans, Katy; Reddy, Steven; Tomkins, A.; Crossley, Rosalind; Frost, B. (2017)
      Magnetite breakdown during subduction of serpentinised ultramafic rocks may produce oxidised fluids that oxidise the deep Earth and/or the sub-arc mantle, either via direct transport of ferric iron, or via redox reactions ...
    • Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the "Great Dunite Shortage" and HED-mesosiderite connection
      Greenwood, R.; Barrat, J.; Scott, E.; Haack, H.; Buchanan, P.; Franchi, I.; Yamaguchi, A.; Johnson, D.; Bevan, Alexander; Burbine, T. (2015)
      Evidence from iron meteorites indicates that a large number of differentiated planetesimals formed early in Solar System history. These bodies should have had well-developed olivine-rich mantles and consequentially such ...
    • Elemental, isotopic and Ar40/39Ar data of the lake Carnegie Eucrite, old homestead 003 Howardite, and anomalous basaltic Achondrite Deakin 010
      Kennedy, T.; Jourdan, F.; Bevan, Alexander; Gee, M.; Downes, P.; Cliff, J.; Frew, A. (2012)
      Introduction: Petrography, electron microprobe major and trace elements, oxygen isotope s and 40 Ar/ 39 Ar thermo-chronometry of a new cumulate eucrite (Lake Carnegie), a brecciated eucrite - like basaltic achondrite ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.