Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane

    Access Status
    Fulltext not available
    Authors
    Zhu, J.
    Tian, M.
    Hou, J.
    Wang, J.
    Lin, J.
    Zhang, Y.
    Liu, Jian
    Van Der Bruggen, B.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhu, J. and Tian, M. and Hou, J. and Wang, J. and Lin, J. and Zhang, Y. and Liu, J. et al. 2016. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. Journal of Materials Chemistry A. 4 (5): pp. 1980-1990.
    Source Title
    Journal of Materials Chemistry A
    DOI
    10.1039/c5ta08024j
    ISSN
    2050-7488
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/73497
    Collection
    • Curtin Research Publications
    Abstract

    © The Royal Society of Chemistry 2016. Surface zwitterionization of graphene oxide (GO) was firstly conducted by grafting poly(sulfobetaine methacrylate) (PSBMA) onto the GO surface via reverse atom transfer radical polymerization (RATRP). Then, a novel type of GO-PSBMA/polyethersulfone (PES) loose nanofiltration membrane (NFM) was constructed by mixing with modified GO composites via phase inversion. FTIR, XRD, TEM, XPS and TGA were applied to analyze the chemical composition and morphology, confirming a favorable synthesis of GO-PSBMA composites. Besides, the effect of the embedded GO-PSBMA nanoplates on the morphology and overall performance of the hybrid membranes was systematically investigated based on the SEM images, water contact angle, zeta potential, and fouling parameters. It was found that the water flux of the hybrid membrane was greatly enhanced from 6.44 L m-2h-1bar-1to 11.98 L m-2h-1bar-1when the GO-PSBMA content increased from 0 to 0.22 wt%. The antifouling tests revealed that the GO-PSBMA embedded membranes had an excellent antifouling performance: a high flux recovery ratio (ca. 94.4%) and a low total flux decline ratio (ca. 0.18). Additionally, the hybrid membranes exhibited a distinct advance in the mechanical strength due to the addition of highly rigid GO. Notably, compared with unmodified membranes, the hybrid membranes had a higher retention of Reactive Black 5 (99.2%) and Reactive Red 49 (97.2%), and a lower rejection of bivalent salts (10% for Na2SO4) at an operational pressure of 0.4 MPa, rendering the membranes promising for dye/salt fractionation.

    Related items

    Showing items related by title, author, creator and subject.

    • A systematic review of the molecular simulation of hybrid membranes for performance enhancements and contaminant removals
      Yee, Cia Yin; Lim, Lam Ghai; Lock, Serene Sow Mun; Jusoh, Norwahyu; Yiin, Chung Loong; Chin, Bridgid ; Chan, Yi Herng; Loy, Adrian Chun Minh; Mubashir, Muhammad (2022)
      Number of research on molecular simulation and design has emerged recently but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This paper aims ...
    • Fabrication of a mixed matrix membrane with in situ synthesized quaternized polyethylenimine nanoparticles for dye purification and reuse
      Zhu, J.; Zhang, Y.; Tian, M.; Liu, Jian (2015)
      © 2015 American Chemical Society. A facile and novel method for the fabrication of mixed matrix membranes (MMMs) has been developed, i.e., in situ synthesis of quaternized polyethylenimine (QPEI) soft nanoparticles (SNPs) ...
    • Long-lasting antibacterial behavior of a novel mixed matrix water purification membrane
      Zhao, Q.; Hou, J.; Shen, J.; Liu, Jian; Zhang, Y. (2015)
      © The Royal Society of Chemistry. Membrane fouling by microbial and organic components is considered as the "Achilles heel" of membrane processes as it not only reduces the membrane performance but also leads to membrane ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.