Future perspectives of thermal energy storage with metal hydrides
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Thermochemical energy storage materials have advantage of much higher energy densities compared to latent or sensible heat storage materials. Metal hydrides show good reversibility and cycling stability combined with high enthalpies. They can be used for short and long-term heat storage applications and can increase the overall flexibility and efficiency of solar thermal energy production. Metal hydrides with working temperatures less than 500 °C were in the focus of research and development over the last years. For the new generation of solar thermal energy plants new hydrides materials with working temperatures above 600 °C must be developed and characterized. In addition to thorough research on new metal hydrides, the construction and engineering of heat storage systems at these high temperatures are challenging. Corrosion problems, hydrogen embrittlement and selection of heat transfer fluids are significant topics for future research activities.
Related items
Showing items related by title, author, creator and subject.
-
Harries, D.; Paskevicius, Mark; Sheppard, Drew; Price, T.; Buckley, Craig (2012)Increased reliance on solar energy conversion technologies will necessarily constitute a major plank of any forward global energy supply strategy. It is possible that solar photovoltaic (PV) technology and concentrating ...
-
Bellosta von Colbe, J.; Ares, J.R.; Barale, J.; Baricco, M.; Buckley, Craig ; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; Jensen, E.H.; Jensen, T.; Jepsen, J.; Klassen, T.; Lototskyy, M.V.; Manickam, K.; Montone, A.; Puszkiel, J.; Sartori, S.; Sheppard, Drew ; Stuart, A.; Walker, G.; Webb, C.J.; Yang, H.; Yartys, V.; Züttel, A.; Dornheim, M. (2019)Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for ...
-
Sheppard, D.; Humphries, Terry; Buckley, C. (2016)Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based ...