Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma

    Access Status
    Fulltext not available
    Authors
    Sun, J.
    Lei, Y.
    Dai, Z.
    Liu, Jian
    Huang, T.
    Wu, J.
    Xu, Z.
    Sun, X.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sun, J. and Lei, Y. and Dai, Z. and Liu, J. and Huang, T. and Wu, J. and Xu, Z. et al. 2017. Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma. ACS Applied Materials and Interfaces. 9 (9): pp. 7990-7999.
    Source Title
    ACS Applied Materials and Interfaces
    DOI
    10.1021/acsami.6b16509
    ISSN
    1944-8244
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/73754
    Collection
    • Curtin Research Publications
    Abstract

    A novel layered double hydroxide (LDH) nanoparticle/thermogel composite drug delivery system (DDS) for sustained release of brimonidine (Bri) has been designed, prepared, and characterized in this study for treatment of severe glaucoma. Brimonidine is first loaded onto LDH (Bri@LDH) nanoparticles, which are then dispersed in the thermogel consisting of plenty of micelles based on poly(dl-lactic acid-co-coglycolic acid)-polyethylene glycol-poly(dl-lactic acid-co-coglycolic acid) (PLGA-PEG-PLGA) copolymer. The Bri@LDH/Thermogel DDS containing 125.0 µg/g of brimonidine has been found to sustainably release the drug for up to 144 h, significantly extending the drug release period compared to that from Bri@LDH nanoparticles. The Bri@LDH/Thermogel DDS is not cytotoxic to human corneal epithelial cells and shows good biocompatibility. In vivo drug release from the special contact lens made of Bri@LDH/Thermogel DDS has been sustained for at least 7 days, which more effectively modulates the relief of intraocular pressure (IOP). Thus, the Bri@LDH/Thermogel DDS is a promising drug delivery alternative that can be used for treatment of severe glaucoma.

    Related items

    Showing items related by title, author, creator and subject.

    • Improvement of Drug Release and Compatibility between Hydrophilic Drugs and Hydrophobic Nanofibrous Composites
      Haroosh, Hazim; Dong, Roger ; Jasim, Shaimaa; Ramakrishna, Seeram (2021)
      Electrospinning is a flexible polymer processing method to produce nanofibres, which can be applied in the biomedical field. The current study aims to develop new electrospun hybrid nanocomposite systems to benefit the ...
    • Morphological Structures and Drug Release Effect of Multiple Electrospun Nanofibre Membrane Systems Based on PLA, PCL and PCL/Magnetic Nanoparticle Composites
      Haroosh, Hazim; Dong, Roger ; Jasim, Shaimaa; Ramakrishna, Seeram (2022)
      Biopolymers are good carrier materials in relation to efficient release sustainability for encapsulated drugs. In particular, electrospun polymer/composite fibre membranes can offer greater benefits owing to their competitive ...
    • Electrospun nanofibrous composites to control drug release and interaction between hydrophilic drug and hydrophobic blended polymer matrix
      Haroosh, Hazim; Dong, Yu (2013)
      This study has developed new electrospun hybrid nanocomposite systems using poly(lactic acid) PLA: poly(ε-caprolactone) PCL blends and PLA: PCL / halloysite nanotubes-3-aminopropyltriethoxysilane (HNT-ASP) to take the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.