LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ~650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be a =-1.75 ± 0.19 (S a va).We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.
Related items
Showing items related by title, author, creator and subject.
-
Savini, F.; Bonafede, A.; Brüggen, M.; Rafferty, D.; Shimwell, T.; Botteon, A.; Brunetti, G.; Intema, Huib ; Wilber, A.; Cassano, R.; Vazza, F.; Van Weeren, R.; Cuciti, V.; De Gasperin, F.; Röttgering, H.; Sommer, M.; Bîrzan, L.; Drabent, A. (2019)Centrally located diffuse radio emission has been observed in both merging and non-merging galaxy clusters. Depending on their morphology and size, we distinguish between giant radio haloes, which occur predominantly in ...
-
Botteon, A.; Shimwell, T.W.; Bonafede, A.; Dallacasa, D.; Gastaldello, F.; Eckert, D.; Brunetti, G.; Venturi, T.; Van Weeren, R.J.; Mandal, S.; Brüggen, M.; Cassano, R.; De Gasperin, F.; Drabent, A.; Dumba, C.; Intema, Huib ; Hoang, D.N.; Rafferty, D.; Röttgering, H.J.A.; Savini, F.; Shulevski, A.; Stroe, A.; Wilber, A. (2019)Context: A number of merging galaxy clusters show the presence of large-scale radio emission associated with the intra-cluster medium (ICM). These synchrotron sources are generally classified as radio haloes and radio ...
-
Hoang, D.N.; Shimwell, T.W.; Van Weeren, R.J.; Brunetti, G.; Röttgering, H.J.A.; Andrade-Santos, F.; Botteon, A.; Brüggen, M.; Cassano, R.; Drabent, A.; De Gasperin, F.; Hoeft, M.; Intema, Huib ; Rafferty, D.A.; Shweta, A.; Stroe, A. (2019)Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic ...