Interfacial engineering of electron transport layer using Caesium Iodide for efficient and stable organic solar cells
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Polymer solar cells (PSCs) have gained immense research interest in the recent years predominantly due to low-cost, solution process-ability, and facile device fabrication. However, achieving high stability without compromising the power conversion efficiency (PCE) serves to be an important trade-off for commercialization. In line with this, we demonstrate the significance of incorporating a CsI/ZnO bilayer as electron transport layer (ETL) in the bulk heterojunction PSCs employing low band gap polymer (PTB7) and fullerene (PC71BM) as the photo-active layer. The devices with CsI/ZnO interlayer exhibited substantial enhancement of 800% and 12% in PCE when compared to the devices with pristine CsI and pristine ZnO as ETL, respectively. Furthermore, the UV and UV-ozone induced degradation studies revealed that the devices incorporating CsI/ZnO bilayer possess excellent decomposition stability (∼23% higher) over the devices with pristine ZnO counterparts. The incorporation of CsI between ITO and ZnO was found to favorably modify the energy-level alignment at the interface, contributing to the charge collection efficiency as well as protecting the adjacent light absorbing polymer layers from degradation. The mechanism behind the improvement in PCE and stability is analyzed using the electrochemical impedance spectroscopy and dark I–V characteristics.
Related items
Showing items related by title, author, creator and subject.
-
Griffith, M.; Cooling, N.; Vaughan, B.; O'Donnell, Kane; Al-Mudhaffer, M.; Al-Ahmad, A.; Noori, M.; Almyahi, F.; Belcher, W.; Dastoor, P. (2015)We report the demonstration of sputter-coated aluminum contacts directly onto P3HT:PCBM organic photovoltaic devices using a R2R process without detrimentally influencing the performance of the devices. The final sputtered ...
-
Upama, M.; Elumalai, Naveen Kumar; Mahmud, M.; Xu, C.; Wang, D.; Wright, M.; Uddin, A. (2018)Organic solar cells have attracted much attention in the recent years due to their many intrinsic advantages, such as, light weight, flexibility, low-cost, solution processing, and facile device fabrication. In this study, ...
-
Upama, M.; Elumalai, Naveen Kumar; Mahmud, M.; Sun, H.; Wang, D.; Chan, K.; Wright, M.; Xu, C.; Uddin, A. (2017)In this article, we attempt to demonstrate a way of tackling one of the biggest challenges in the path of commercialization of organic solar cells, the initial photo-degradation of the cells known as “burn-in”. The “burn-in” ...