Facile synthesis of N-doped 3D graphene aerogel and its excellent performance in catalytic degradation of antibiotic contaminants in water
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
3D nitrogen-doped graphene aerogels (NGA) with hierarchically porous architectures and integrated macrostructures were facilely constructed by self-assembly of graphene oxide (GO) nanosheets and melamine. NGA exhibited excellent catalytic activities in peroxymonosulfate (PMS) activation for oxidative degradation of ibuprofen (IBP). NGA attained 44- and 8-fold enhancement in reaction rate over graphene aerogel (GA) and N-doped reduced graphene oxide (NrGO), respectively. Furthermore, the chemical reactivity of NGA could be facilely recovered by thermal annealing. The superior catalysis of NGA can be ascribed to the synergistic effects of 3D porous framework and N-doping in sp2-hybridized NGA. Graphitic N is demonstrated to be the intrinsic active sites in PMS activation. The 3D porous architecture is beneficial for adsorption and diffusion of the pollutant/oxidant and graphitic carbons within the conjugated p system facilitate the electron transfer. Electron paramagnetic resonance and radical quenching tests indicate that NGA/PMS is a radical-based system, where SO4•- and •OH with strong oxidative potentials account for the catalytic degradation of IBP. This study affords an innovative strategy for development of promising metal-free catalysts towards better advanced oxidation processes.
Related items
Showing items related by title, author, creator and subject.
-
Duan, X.; O'Donnell, Kane; Sun, Hongqi; Wang, Yuxian; Wang, Shaobin (2015)Sulfur and nitrogen co-doped reduced graphene oxide (rGO) is synthesized bya facile method and demonstrated remarkably enhanced activities in metal-free activation of peroxymonosulfate (PMS) for catalytic oxidation of ...
-
Zhao, Y.; Zhou, Y.; O'Hayre, R.; Shao, Zongping (2013)Hydrazine is often used to reduce graphene oxide (GO) to produce graphene. Recent observationssuggested that when hydrazine is used to reduce GO, the resulting reduced graphene actually contains certain amounts of nitrogen ...
-
Li, D.; Duan, Xianguang; Sun, Hongqi; Kang, J.; Zhang, H.; Tade, Moses; Wang, S. (2017)A green and facile protocol of thermal treatment of graphene oxide (GO) with urea was adopted to synthesize nitrogen-doped graphene (NG-Urea-air) at a low temperature (350 °C) in the static air. The resulting sample ...