Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Feedback of mantle metasomatism on olivine micro–fabric and seismic properties of the deep lithosphere

    Access Status
    Fulltext not available
    Authors
    Kourim, F.
    Beinlich, Andreas
    Wang, K.
    Michibayashi, K.
    O'Reilly, S.
    Pearson, N.
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kourim, F. and Beinlich, A. and Wang, K. and Michibayashi, K. and O'Reilly, S. and Pearson, N. 2019. Feedback of mantle metasomatism on olivine micro–fabric and seismic properties of the deep lithosphere. Lithos. 328-329: pp. 43-57.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2019.01.016
    ISSN
    0024-4937
    School
    The Institute for Geoscience Research (TIGeR)
    URI
    http://hdl.handle.net/20.500.11937/74001
    Collection
    • Curtin Research Publications
    Abstract

    The interaction of hydrous fluids and melts with dry rocks of the lithospheric mantle inevitably modifies their viscoelastic and chemical properties due to the formation of compositionally distinct secondary phases. In addition, melt percolation and the associated metasomatic alteration of mantle rocks may also facilitate modification of the pre–existing rock texture and olivine crystallographic preferred orientation (CPO) and thus seismic properties. Here we explore the relationship between mantle metasomatism, deformation and seismic anisotropy using subduction–related mantle xenoliths from the Penghu Islands, western Taiwan. The investigated xenoliths have equilibrated at upper lithospheric mantle conditions (879 °C to 1127 °C) based on pyroxene geothermometry and show distinct variations in clinopyroxene chemical composition, texture and olivine CPO allowing for the classification of two distinct groups. Group 1 xenoliths contain rare earth element (REE) depleted clinopyroxene, show a porphyroclastic texture and olivine grains are mostly characterized by [100]–axial pattern symmetries. In contrast, REE-enriched clinopyroxene from Group 2 xenoliths occur in a fine–grained equigranular texture and coexisting olivine frequently displays [010]–axial pattern symmetries. The clinopyroxene compositions are indicative of cryptic and modal to stealth metasomatic alteration of Group 1 and Group 2 xenoliths, respectively. Furthermore, the observed olivine [100]–axial pattern of Group 1 xenoliths reflects deformation by dislocation creep at high temperature, low pressure and dry conditions, whereas olivine [010]–axial patterns of Group 2 xenoliths imply activation of olivine [001] glide planes along preferentially wet (010) grain boundaries. This correlation indicates that the variation in olivine CPO symmetry from [100]– to [010]–axial pattern in Penghu xenoliths results from deformation and intra-crystalline recovery by subgrain rotation during metasomatic alteration induced by melt percolation. The microstructural observations and olivine CPO combined with petrological and geochemical data suggest that Group 1 xenoliths preserve microstructural and chemical characteristics of an old, probably Proterozoic lithosphere, while Group 2 xenoliths record localized Miocene deformation associated with wall–rock heating and metasomatism related to melt circulation. Furthermore, the observed transition of olivine CPO from [100]–axial pattern to [010]–axial pattern by deformation in the presence of variable melt fractions and associated metasomatic alteration can be inferred to modify the physical properties of mantle rocks.

    Related items

    Showing items related by title, author, creator and subject.

    • Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton
      Ionov, D.; Doucet, Luc-Serge; Pogge von Strandmann, P.; Golovin, A.; Korsakov, A. (2017)
      We report the concentrations ([Li]) and isotopic compositions of Li in mineral separates and bulk rocks obtained by MC-ICPMS for 14 previously studied garnet and spinel peridotite xenoliths from the Udachnaya kimberlite ...
    • Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite
      Ionov, D.; Doucet, Luc; Xu, Y.; Golovin, A.; Oleinikov, O. (2018)
      The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for ...
    • High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths
      Doucet, Luc-Serge; Peslier, A.; Ionov, D.; Brandon, A.; Golovin, A.; Goncharov, A.; Ashchepkov, I. (2014)
      The processes that control water distribution in nominally anhydrous minerals from peridotites are twofold. Melt depletion will remove water while metasomatism can potentially add water to these minerals. These processes ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.