Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Improved estimates of organic carbon using proximally sensed vis-NIR spectra corrected by piecewise direct standardization

    Access Status
    Fulltext not available
    Authors
    Ji, W.
    Viscarra Rossel, Raphael
    Shi, Z.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ji, W. and Viscarra Rossel, R. and Shi, Z. 2015. Improved estimates of organic carbon using proximally sensed vis-NIR spectra corrected by piecewise direct standardization. European Journal of Soil Science. 66 (4): pp. 670-678.
    Source Title
    European Journal of Soil Science
    DOI
    10.1111/ejss.12271
    ISSN
    1351-0754
    School
    School of Molecular and Life Sciences (MLS)
    URI
    http://hdl.handle.net/20.500.11937/74007
    Collection
    • Curtin Research Publications
    Abstract

    We investigated the use of piecewise direct standardization (PDS) to remove the effects of water and other environmental factors from proximally sensed (field) visible-near infrared (vis-NIR) spectra. Our hypothesis was that the PDS-standardized field spectra can be used to predict soil carbon effectively with calibrations derived from existing spectroscopic databases of spectra recorded in the laboratory on dried, ground and sieved samples. In our experiments we used field spectra recorded in situ with a portable spectrometer at 124 sites in 11 paddy fields in Zhejiang Province, China. We sampled the soil at these same sites, recorded their spectra in the laboratory and measured their soil organic carbon (SOC) contents with a conventional laboratory technique. Two-thirds of the samples were used to relate the laboratory spectra to SOC by partial least squares regression (PLSR), and the remaining one-third was used as an independent validation dataset. We selected a representative set of samples from corresponding field and laboratory spectra that we could use as the PDS transfer set. Piecewise direct standardization was used to relate each wavelength in the laboratory spectra to the corresponding wavelength and its neighbours in the field spectra. The field spectra of the validation samples were then corrected with PDS so that they acquired the characteristics of the spectra measured under laboratory conditions. The approach was evaluated by (i) quantifying the similarity between the PDS-standardized spectra and their corresponding laboratory spectra, (ii) measuring the accuracy of their SOC predictions on the independent validation dataset and (iii) comparing these results with those of direct standardization (DS). Both PDS and DS led to considerable improvements in the predictions of SOC (R<sup>2</sup>=0.71, R<sup>2</sup>=0.60, respectively), compared with those with original field spectra (R<sup>2</sup>=0.03). However, fewer transfer samples were needed with PDS to obtain similar results.

    Related items

    Showing items related by title, author, creator and subject.

    • Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations
      Ji, W.; Viscarra Rossel, Raphael; Shi, Z. (2015)
      Visible-near infrared (vis-NIR) spectroscopy can be used to estimate soil properties effectively using spectroscopic calibrations derived from data contained in spectroscopic databases. However, these calibrations cannot ...
    • Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions
      Ji, W.; Li, S.; Chen, S.; Shi, Z.; Viscarra Rossel, Raphael; Mouazen, A. (2016)
      Organic matter (OM), total nitrogen (TN), and pH are essential soil properties for assessing the fertility of paddy soils. They can be measured with visible and near infrared (vis-NIR) spectroscopy effectively in the ...
    • Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon
      Roudier, P.; Hedley, C.; Lobsey, C.; Viscarra Rossel, Raphael; Leroux, C. (2017)
      Visible near infrared reflectance spectroscopy (vis–NIR) is an increasingly popular measurement method that can provide cheaper and faster predictions of soil properties, including soil organic carbon content (SOC). The ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.