Show simple item record

dc.contributor.authorFalkendal, T.
dc.contributor.authorDe Breuck, C.
dc.contributor.authorLehnert, M.
dc.contributor.authorDrouart, Guillaume
dc.contributor.authorVernet, J.
dc.contributor.authorEmonts, B.
dc.contributor.authorLee, M.
dc.contributor.authorNesvadba, N.
dc.contributor.authorSeymour, Nick
dc.contributor.authorBéthermin, M.
dc.contributor.authorKolwa, S.
dc.contributor.authorGullberg, B.
dc.contributor.authorWylezalek, D.
dc.date.accessioned2019-02-19T04:16:00Z
dc.date.available2019-02-19T04:16:00Z
dc.date.created2019-02-19T03:58:18Z
dc.date.issued2019
dc.identifier.citationFalkendal, T. and De Breuck, C. and Lehnert, M. and Drouart, G. and Vernet, J. and Emonts, B. and Lee, M. et al. 2019. Massive galaxies on the road to quenching: ALMA observations of powerful high redshift radio galaxies. Astronomy and Astrophysics. 621: Article ID A27.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/74155
dc.identifier.doi10.1051/0004-6361/201732485
dc.identifier.doihttp://dx.doi.org/10.1051/0004-6361/201732485
dc.description.abstract

We present 0.″3 (band 6) and 1.″5 (band 3) ALMA observations of the (sub)millimeter dust continuum emission for 25 radio galaxies at 1 <  z <  5.2. Our survey reaches a rms flux density of ∼50 μJy in band 6 (200–250 GHz) and ∼20 μJy in band 3 (100–130 GHz). This is an order of magnitude deeper than single-dish 850 μm observations, and reaches fluxes where synchrotron and thermal dust emission are expected to be of the same order of magnitude. Combining our sensitive ALMA observations with low-resolution radio data from ATCA, higher resolution VLA data, and infrared photometry from Herschel and Spitzer, we have disentangled the synchrotron and thermal dust emission. We determine the star-formation rates and AGN infrared luminosities using our newly developed Multi-resolution and multi-object/origin spectral energy distribution fitting code (MR-MOOSE). We find that synchrotron emission contributes substantially at λ ∼ 1 mm. Through our sensitive flux limits and accounting for a contribution from synchrotron emission in the mm, we revise downward the median star-formation rate by a factor of seven compared to previous estimates based solely on Herschel and Spitzer data. The hosts of these radio-loud AGN appear predominantly below the main sequence of star-forming galaxies, indicating that the star formation in many of the host galaxies has been quenched. Future growth of the host galaxies without substantial black hole mass growth will be needed to bring these objects on the local relation between the supermassive black holes and their host galaxies. Given the mismatch in the timescales of any star formation that took place in the host galaxies and lifetime of the AGN, we hypothesize that a key role is played by star formation in depleting the gas before the action of the powerful radio jets quickly drives out the remaining gas. This positive feedback loop of efficient star formation rapidly consuming the gas coupled to the action of the radio jets in removing the residual gas is how massive galaxies are rapidly quenched.

dc.publisherEDP Sciences
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.titleMassive galaxies on the road to quenching: ALMA observations of powerful high redshift radio galaxies
dc.typeJournal Article
dcterms.source.volume621
dcterms.source.issn0004-6361
dcterms.source.titleAstronomy and Astrophysics
curtin.departmentCurtin Institute of Radio Astronomy (Physics)
curtin.accessStatusOpen access


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0