Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress

    Access Status
    Fulltext not available
    Authors
    Jin, X.
    Li, P.
    Hou, C.
    Wang, X.
    Fan, X.
    Lu, Chunsheng
    Xiao, G.
    Shu, X.
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jin, X. and Li, P. and Hou, C. and Wang, X. and Fan, X. and Lu, C. and Xiao, G. et al. 2019. Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress. Ceramics International. 45 (6): pp. 7278-7285.
    Source Title
    Ceramics International
    DOI
    10.1016/j.ceramint.2019.01.009
    ISSN
    0272-8842
    School
    School of Civil and Mechanical Engineering (CME)
    URI
    http://hdl.handle.net/20.500.11937/74161
    Collection
    • Curtin Research Publications
    Abstract

    ZrB2 based ultra-high temperature ceramic (UHTC) is one of the most promising materials for thermal protection systems. This paper focuses on the oxidation behaviors of ZrB2 under compressive stress. ZrB2 UHTC is fabricated with nano-sized powders at 1500 °C, which is a relative low temperature. Nanoindentation tests are conducted to measure the basic mechanical properties of sintered samples. Results of nanoindentation show that ZrB2 is prepared with good mechanical properties. Oxidation tests are performed under different stress states and temperatures, and oxidation mechanisms and microstructure evolution are discussed. As the oxidation proceeds, ZrO2 grains grow slowly at 1000 °C, but fast at 1200 °C. When oxidized over 1400 °C, ZrO2 grains fuse and micro-sized pores form on the surface due to the release of gaseous oxidation products. The thickness of oxide layer on the samples almost keeps unchanged under various compressive loads. Compared with the stress state, microstructure has a more obvious effect on the oxidation rate. The results in this paper provide a better understanding on the oxidation mechanism of ZrB2 based UHTCs.

    Related items

    Showing items related by title, author, creator and subject.

    • Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics
      Fansuri, Hamzah (2005)
      Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
    • A feasibility study of methane reforming by partial oxidation.
      Zhu, Jian N. (2001)
      Utilisation of natural gas (mainly methane, CH[subscript]4), a clean and abundant resource, is of great importance. Conventional method, steam reforming, though still dominant, requires a considerately high capital ...
    • The effect of stoichiometry on the thermal behaviour of synthetic iron-nickel sulfides
      Chamberlain, Anthony C. (1996)
      The effect of stoichiometry on the pyrolytic decomposition, oxidation and ignition behaviour of synthetic violarite and pentlandite has been established. These minerals, of general formula (Fe,Ni)(subscript)3S(subscript)4 ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.