Ceramic balls protected ultra-high performance concrete structure against projectile impact–A numerical study
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Elsevier Ltd Ceramic materials have excellent mechanical properties such as light weight, great hardness and high compressive strength. In this paper, a numerical study is conducted to investigate the response of ceramic balls protected ultra-high performance concrete (UHPC) targets against the high-velocity rigid projectile impact using the coupled smoothed particle hydrodynamics-finite element (SPH-FE) method in LS-DYNA. Based on the validated numerical models, parametric studies are performed to explore the effect of diameter, spatial arrangement and material type of ceramic balls as well as the impact position on the dynamic performance of UHPC targets, and then perforation and ballistic limits of ceramic balls protected UHPC targets are obtained. Compared with other UHPC slabs at the striking velocities from 500 m/s to 850 m/s, UHPC slabs protected with 6-layer hex-pack arranged ceramic balls with the diameter of 20 mm is most effective in terms of reducing the depth of penetration (DOP). In addition, the utilization of ceramic balls is economical in protective structures since the damaged ceramic balls can be replaced and undamaged ceramic balls are reusable.
Related items
Showing items related by title, author, creator and subject.
-
Ha, San ; Marundrury, S.S.; Pham, Thong ; Pournasiri, E.; Shi, F.; Hao, H. (2022)This paper investigates the effect of using alternative cementitious constituents on the compressive performance of Ultra-High-Performance Concrete (UHPC) for both static and dynamic conditions. The grounded blast furnace ...
-
Wu, C.; Li, Jun; Su, Y. (2018)© 2018 Elsevier Ltd. All rights reserved. Development of Ultra-High Performance Concrete against Blasts: From Materials to Structures presents a detailed overview of UHPC development and its related applications in an era ...
-
Li, J.; Wu, C.; Hao, Hong (2015)Ultra-high performance concrete (UHPC) which is characterized by high strength, high ductility and high toughness has been widely applied in modern structure construction. Outstanding mechanical feature of UHPC not only ...