Insights into the wettability alteration of CO2-assisted EOR in carbonate reservoirs
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Wettability of oil-brine-carbonate system is an important petro-physical parameter, which governs subsurface multiphase flow and residual oil saturation. CO2-assisted EOR techniques have been identified as cost-effective and environmentally friendly means to unlock remaining hydrocarbon resources from carbonate reservoirs. While wettability alteration appears to be one of the main mechanisms during CO2-assisted EOR implementation, the controlling factor(s) of wettability alteration at molecular level remains unclear. We thus hypothesized that excess of H+ as a result of water uptake of CO2 increases hydrophilicity of oil-brine-carbonate systems. More specifically, the surface charge properties will be alterated to more positive due to the increase of H+ in the brine. To test this hypothesis, we measured oil contact angles on calcite surfaces in the presence of non-carbonated brine, carbonated brine, and acidic brine (pH = 3). We also performed surface complexation modelling to examine how the surface chemistry controls over wettability of oil/brine/carbonate system using PHREEQC. Our contact angle results show that both carbonated brine and acidic brine gave a contact angle of 24° and 22° respectively, while non-carbonated brine gives a contact angle of 73° in 1 mol/L CaCl2 brines. Same trend was also observed in synthesized formation brine, showing that non-carbonated formation brine yielded a contact angle of 69° while both acidic formation brine and carbonated formation brine gave a contact angle of 37°. Experimental results show that both carbonated brine, and acidic brine significantly decreased contact angle compared to non-carbonated brine, suggesting a strong water-wet system. Surface complexation modelling shows that for both carbonated water and acidic water, >CaOH2+ dominates surface charges at calcite surfaces, and –NH+ governs surface charges on oil surfaces. Together, these two processes increase repulsive forces thus hydrophilicity. Our study sheds light on the significant influence of excess H+ due to water uptake of CO2 on oil-brine-carbonate system wettability thus enhancing hydrocarbon recovery in carbonate reservoirs.
Related items
Showing items related by title, author, creator and subject.
-
Chen, Y.; Xie, Q.; Sari, A.; Brady, P.; Saeedi, Ali (2018)Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies ...
-
Sari, Ahmad; Xie, Sam; Chen, Yongqiang; Saeedi, Ali; Pooryousefy, Ehsan (2017)Wettability alteration appears to be the main mechanism of low salinity water flooding in carbonate reservoirs. However, what factor(s) controls the wettability alteration is not clearly defined. We hypothesized that zeta ...
-
pH effect on wettability of oil/brine/carbonate system: Implications for low salinity water floodingXie, Sam; Sari, A.; Pu, W.; Chen, Y.; Brady, P.; Al Maskari, N.; Saeedi, Ali (2018)© 2018 Elsevier B.V. Wettability of oil/brine/carbonate system is a critical parameter to govern subsurface multi-phase flow behaviour, thus remaining oil saturation and ultimate oil recovery in carbonate reservoirs. ...