Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia) – A two-stage assembly of the supercontinent Nuna?
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
We present new paleo- and rock magnetic results from the ca. 1792 Ma Hart Dolerite sills that intrude the strata of the Kimberley craton, Western Australia. From 24 sites sampled, 23 are directionally clustered and the site mean directions were used to calculate a grand mean direction. Ten of the 23 sites have 95% confidence intervals (a95) less than 16°. A positive reversal test, dissimilarity of the corresponding paleopole from known younger Australian poles, and a previously reported positive baked contact test, indicate that our paleomagnetic results are of primary origin, and the results are consistent with the geologic interpretation that the Hart Dolerite sills represent a multiphase magmatic emplacement over the duration of several million years. The new ca. 1792 Ma paleopole for the Kimberley craton is applicable to the entire North Australian Craton. A comparison of Paleoproterozoic poles from the North and West Australian cratons supports the occurrence of a previously proposed 40° intracontinental rotation between the two cratons during latest Neoproterozoic time. Furthermore, comparing these Australian poles with similar aged Laurentian poles shows that the apparent polar wander paths of the two continents have a similar history between ca. 1800 and 1730 Ma and between ca. 1650 and 1400 Ma. To achieve a fit within uncertainty limits, an additional relative latitudinal motion is necessary during the transition interval (1730–1650 Ma). We suggest that a two-stage evolution occurred between Laurentia and Australia during the assembly of the supercontinent Nuna. Australia and Laurentia traveled together between ca. 1800 Ma until ca. 1730 Ma in a semi-stable configuration. During 1730–1650 Ma, they underwent a net relative latitudinal motion, leading to the final assembly of Nuna after ca. 1650 Ma.
Related items
Showing items related by title, author, creator and subject.
-
Liu, Y.; Li, Zheng-Xiang; Pisarevskiy, Sergei; Kirscher, Uwe; Mitchell, R.; Stark, J. Camilla; Clark, Christopher; Hand, M. (2018)A pilot palaeomagnetic study was conducted on the recently dated with in situ SHRIMP U-Pb method at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger Hills dykes of the Mawson Craton (East Antarctica). Of the six dykes ...
-
Kirkland, Chris; Spaggiari, C.; Pawley, M.; Wingate, M.; Smithies, R.; Howard, H.; Tyler, I.; Belousova, E.; Poujol, M. (2011)The Albany-Fraser Orogen is considered to be a response to Mesoproterozoic continent–continent collision between the combined North and West Australian Cratons and the combined East Antarctic and South Australian Cratons. ...
-
Nordsvan, A.; Collins, W.; Li, Z.; Spencer, Christopher; Pourteau, Amaury; Withnall, I.; Betts, P.; Volante, S. (2018)The Georgetown Inlier of northeast Australia provides evidence of critical links between Australia and Laurentia during the late Paleoproterozoic and the early Mesoproterozoic. Detrital zircon age spectra from sedimentary ...