Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Tracing the provenance of volcanic ash in Permian–Triassic boundary strata, South China: Constraints from inherited and syn-depositional magmatic zircons

    Access Status
    Fulltext not available
    Authors
    Zhao, T.
    Algeo, T.
    Feng, Q.
    Zi, Jianwei
    Xu, G.
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhao, T. and Algeo, T. and Feng, Q. and Zi, J. and Xu, G. 2019. Tracing the provenance of volcanic ash in Permian–Triassic boundary strata, South China: Constraints from inherited and syn-depositional magmatic zircons. Palaeogeography, Palaeoclimatology, Palaeoecology. 516: pp. 190-202.
    Source Title
    Palaeogeography, Palaeoclimatology, Palaeoecology
    DOI
    10.1016/j.palaeo.2018.12.002
    ISSN
    0031-0182
    School
    John de Laeter Centre
    URI
    http://hdl.handle.net/20.500.11937/74478
    Collection
    • Curtin Research Publications
    Abstract

    The Permian-Triassic boundary (PTB) mass extinction, the most severe biocrisis in Earth's history, is thought to have been triggered by catastrophic volcanic activity. PTB sections in South China contain numerous volcanic ash beds, the source of which is inferred to have been either the Siberian Traps Large Igneous Province (STLIP) or intraregional subduction-zone arc volcanism. In this study, the provenance of these ash beds is determined through a comprehensive analysis based on the geochronological and geochemical signatures of zircons from four PTB sections (Dongpan, Xinmin, Ganxi and Shangsi). Inherited zircons yielded U–Pb ages of 250–3521 Ma with major age clusters in the Permian, Carboniferous to Silurian, early Cambrian to Neoproterozoic, early Neoproterozoic to late Mesoproterozoic, and early Paleoproterozoic. The age spectrum of these zircons is similar to those of detrital zircons from sedimentary and magmatic rocks of the South China and Indochina cratons but different from those of the Siberian Craton, providing evidence for an intraregional source of the volcanic material. The trace-element, eHf(t), and d18O signatures of syn-depositional magmatic zircons are consistent with an arc-related/orogenic setting. PTB sections in South China can be assigned to sectors based on the number and cumulative thickness of ash beds and the length of zircon crystals. Sector I (South) includes the Dongpan and Xinmin sections, which have cumulative ash-bed thicknesses of 0.86–1.14 m and average zircon lengths of 151–217 µm. Sector II (North) includes the Ganxi, Shangsi and Daxiakou sections, which have cumulative ash-bed thicknesses of 0.17–0.33 m and average zircon lengths of 82–104 µm. Sector III (Northeast) includes the Niushan and Meishan sections, which have cumulative ash-bed thicknesses of 0.1–0.14 m and average zircon lengths of 71–73 µm. Systematic trends toward fewer and thinner ash beds and as well as smaller zircon sizes from Sector I to Sector III indicate a paleo-northward or -northeastward direction of ash transport. Collectively, our findings provide evidence that the source of volcanic ash in South China PTB sections was intraregional subduction-zone arc volcanism along the convergent margin between the South China and Indochina cratons.

    Related items

    Showing items related by title, author, creator and subject.

    • Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet
      Wang, R.; Weinberg, R.; Collins, Bill; Richards, J.; Zhu, D. (2018)
      The recent discovery of large porphyry copper deposits (PCDs) associated with Miocene (22–12 Ma) granitoid magmas in the eastern section of the Paleocene-Eocene Gangdese magmatic arc in the Himalaya-Tibetan orogenic belt ...
    • Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ18O igneous province, east-central China
      Fu, B.; Kita, N.; Wilde, Simon; Liu, X.; Cliff, J.; Greig, A. (2013)
      Zircons from 71 diverse rocks from the Qinling-Tongbai-Dabie-Sulu orogenic belt in east-central China and, for comparison, eight from adjoining areas in the South China and North China blocks, have been analyzed for in ...
    • Initial breakup of supercontinent Rodinia as recorded by ca 860–840 Ma bimodal volcanism along the southeastern margin of the Yangtze Block, South China
      Lyu, P.; Li, W.; Wang, Xuan-Ce; Pang, C.; Cheng, J.; Li, X. (2017)
      Abstract It is considered that mantle plumes play an important role in the breakup of supercontinents, but continental rifting and associated bimodal volcanism often predate mantle-plume magmatism and the major stage of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.