Show simple item record

dc.contributor.authorHabibi, Hamed
dc.contributor.authorHoward, Ian
dc.contributor.authorHabibi, R.
dc.date.accessioned2019-02-19T04:17:04Z
dc.date.available2019-02-19T04:17:04Z
dc.date.created2019-02-19T03:58:31Z
dc.date.issued2018
dc.identifier.citationHabibi, H. and Howard, I. and Habibi, R. 2018. Bayesian Fault Probability Estimation: Application in Wind Turbine Drivetrain Sensor Fault Detection. Asian Journal of Control.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/74497
dc.identifier.doi10.1002/asjc.1973
dc.description.abstract

In this paper, the extension of the Bayesian framework for sensor fault detection of nonlinear systems proposed in [25] is studied utilizing particle filtering and the expectation maximization (EM) algorithm, in which the fault probability is calculated. The proposed algorithm is implemented on a wind turbine benchmark model to detect drivetrain sensor faults, which are one of the most addressed and likely faults in offshore wind turbines. The fault probability estimation effectively eliminates the need for installing identical redundant sensors. Indeed, because of the use of the unknown wind speed estimator, the residual signal, constructed based on the drivetrain estimated states, is not able to clearly signify the fault periods, a situation in which the fault probability accurately does this task. Also, using the proposed algorithm, the fault size for each sensor is estimated via a one-step calculation, which decreases the complexity of this algorithm. The fault identification is performed using the recursive least square method and two other modifications, including exponentially weighted and windowed estimates. Additionally, in the fault accommodation step, the concept of a virtual sensor is used to remove the need for reconfiguring the current controller, which reduces complexity and expense. In the simulation section, using a real measured wind speed for two different fault scenarios, the proposed algorithm is evaluated and finally, conclusions are stated.

dc.publisherChinese Automatic Control Society
dc.titleBayesian Fault Probability Estimation: Application in Wind Turbine Drivetrain Sensor Fault Detection
dc.typeJournal Article
dcterms.source.issn1561-8625
dcterms.source.titleAsian Journal of Control
curtin.departmentWASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
curtin.accessStatusFulltext not available
curtin.contributor.orcidHoward, Ian [0000-0003-3999-9184]


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record