Complex hydrides for energy storage
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In the past decades, complex hydrides and complex hydrides-based materials have been thoroughly investigated as materials for energy storage, owing to their very high gravimetric and volumetric hydrogen capacities and interesting cation and hydrogen diffusion properties. Concerning hydrogen storage, the main limitations of this class of materials are the high working temperatures and pressures, the low hydrogen absorption and desorption rates and the poor cyclability. In the past years, research in this field has been focused on understanding the hydrogen release and uptake mechanism of the pristine and catalyzed materials and on the characterization of the thermodynamic aspects, in order to rationally choose the composition and the stoichiometry of the systems in terms of hydrogen active phases and catalysts/destabilizing agents. Moreover, new materials have been discovered and characterized in an attempt to find systems with properties suitable for practical on-board and stationary applications. A significant part of this rich and productive activity has been performed by the research groups led by the Experts of the International Energy Agreement Task 32, often in collaborative research projects. The most recent findings of these joint activities and other noteworthy recent results in the field are reported in this paper.
Related items
Showing items related by title, author, creator and subject.
-
Sheppard, Drew A (2008)Concerns over green house gas emissions and their climate change effects have lead to a concerted effort into environmental friendly technologies. One such emphasis has been on the implementation of the hydrogen economy. ...
-
Murshidi, Julie Andrianny (2012)Concerns about the impact that fossil fuels have on the environment and their increasing price to the consumer have led to research being undertaken to evaluate and refine other energy carriers that will be comparable to ...
-
Humphries, Terry; Sheppard, Drew; Li, G.; Rowles, Matthew; Paskevicius, Mark; Matsuo, M.; Aguey-Zinsou, K.; Sofianos, M. Veronica; Orimo, S.; Buckley, Craig (2018)© 2018 The Royal Society of Chemistry. Complex transition metal hydrides have been identified as being materials for multi-functional applications holding potential as thermal energy storage materials, hydrogen storage ...