The Radio-bright Accreting Millisecond X-Ray Pulsar IGR J17591-2342
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article has been accepted for publication in The Astrophysical Journal Letters ©: 2018 The American Astronomical Society. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
IGR J17591-2342 is a 527 Hz accreting millisecond X-ray pulsar that was discovered in outburst in 2018 August. In this Letter, we present quasi-simultaneous radio and X-ray monitoring of this source during the early part of the outburst. IGR J17591-2342 is highly absorbed in X-rays, with an equivalent hydrogen absorption along the line of sight, NH, of 4.4-1022 cm-2, where the Galactic column density is expected to be 1-2-1022 cm-2. The high absorption suggests that the source is either relatively distant (6 kpc), or that the X-ray emission is strongly absorbed by material local to the system. Radio emission detected by the Australia Telescope Compact Array shows that, for a given X-ray luminosity and for distances greater than 3 kpc, this source was exceptionally radio-loud when compared to other accreting neutron stars in outburst (LX1033 erg s-1). For most reasonable distances, IGR J17591-2342 appeared as radio luminous as actively accreting, stellar-mass black hole X-ray binaries.
Related items
Showing items related by title, author, creator and subject.
-
Gusinskaia, N.V.; Russell, T.D.; Hessels, J.W.T.; Bogdanov, S.; Degenaar, N.; Deller, A.T.; Van Den Eijnden, J.; Jaodand, A.D.; Miller-Jones, James ; Wijnands, R. (2020)© 2019 The Author(s). IGR J17591-2342 is a new accreting millisecond X-ray pulsar that was recently discovered in outburst in 2018. Early observations revealed that the source's radio emission is brighter than that of any ...
-
Miller-Jones, James; Strader, J.; Heinke, C.; Maccarone, T.; van den Berg, M.; Knigge, C.; Chomiuk, L.; Noyola, E.; Russell, T.; Seth, A.; Sivakoff, G. (2015)We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C iv emission line in its ultraviolet spectrum providing a clear signature of accretion, ...
-
Deller, A.; Moldon, J.; Miller-Jones, James; Patruno, A.; Hessels, J.; Archibald, A.; Paragi, Z.; Heald, G.; Vilchez, N. (2015)The transitional millisecond pulsar (MSP) binary system PSR J1023+0038 re-entered an accreting state in 2013 June in which it bears many similarities to low-mass X-ray binaries (LMXBs) in quiescence or near-quiescence. ...