Show simple item record

dc.contributor.authorMikulevicius, R.
dc.contributor.authorZhang, Changyong
dc.date.accessioned2019-02-19T04:18:17Z
dc.date.available2019-02-19T04:18:17Z
dc.date.created2019-02-19T03:58:31Z
dc.date.issued2018
dc.identifier.citationMikulevicius, R. and Zhang, C. 2018. Weak euler scheme for lévy-driven stochastic differential equations. Theory of Probability and Its Applications. 63 (2): pp. 246-266.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/74847
dc.identifier.doi10.1137/S0040585X97T989039
dc.description.abstract

This paper studies the rate of convergence of the weak Euler approximation for solutions to Lévy-driven stochastic differential equations with nondegenerate main part driven by a spherically symmetric stable process, under the assumption of Hölder continuity. The rate of convergence is derived for a full regularity scale based on solving the associated backward Kolmogorov equation and investigating the dependence of the rate on the regularity of the coefficients and driving processes.

dc.publisherTVP
dc.titleWeak euler scheme for lévy-driven stochastic differential equations
dc.typeJournal Article
dcterms.source.volume63
dcterms.source.number2
dcterms.source.startPage246
dcterms.source.endPage266
dcterms.source.issn0040-585X
dcterms.source.titleTheory of Probability and Its Applications
curtin.note

Copyright © 2018 Society for Industrial and Applied Mathematics

curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record