Atypical nested 22q11.2 duplications between LCR22B and LCR22D are associated with neurodevelopmental phenotypes including autism spectrum disorder with incomplete penetrance
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc. Background: Chromosome 22q11.2 is susceptible to genomic rearrangements and the most frequently reported involve deletions and duplications between low copy repeats LCR22A to LCR22D. Atypical nested deletions and duplications are rarer and can provide a valuable opportunity to investigate the dosage effects of a smaller subset of genes within the 22q11.2 genomic disorder region. Methods: We describe thirteen individuals from six families, each with atypical nested duplications within the central 22q11.2 region between LCR22B and LCR22D. We then compared the molecular and clinical data for patients from this study and the few reported atypical duplication cases, to the cases with larger typical duplications between LCR22A and LCR22D. Further, we analyzed genes with the nested region to identify candidates highly enriched in human brain tissues. Results: We observed that atypical nested duplications are heterogeneous in size, often familial, and associated with incomplete penetrance and highly variable clinical expressivity. We found that the nested atypical duplications are a possible risk factor for neurodevelopmental phenotypes, particularly for autism spectrum disorder (ASD), speech and language delay, and behavioral abnormalities. In addition, we analyzed genes within the nested region between LCR22B and LCR22D to identify nine genes (ZNF74, KLHL22, MED15, PI4KA, SERPIND1, CRKL, AIFM3, SLC7A4, and BCRP2) with enriched expression in the nervous system, each with unique spatiotemporal patterns in fetal and adult brain tissues. Interestingly, PI4KA is prominently expressed in the brain, and this gene is included either partially or completely in all of our subjects. Conclusion: Our findings confirm variable expressivity and incomplete penetrance for atypical nested 22q11.2 duplications and identify genes such as PI4KA to be directly relevant to brain development and disorder. We conclude that further work is needed to elucidate the basis of variable neurodevelopmental phenotypes and to exclude the presence of a second disorder. Our findings contribute to the genotype–phenotype data for atypical nested 22q11.2 duplications, with implications for genetic counseling.
Related items
Showing items related by title, author, creator and subject.
-
Mullin, Benjamin H (2011)Previous studies have identified the 3p14-p22 chromosomal region as a quantitative trait locus for bone mineral density (BMD). The overall aim of this thesis is to identify the gene or genes from this region that are ...
-
Hemming, I.; Forrest, A.; Shipman, P.; Woodward, K.; Walsh, P.; Ravine, D.; Heng, Julian (2016)© 2016 Wiley Periodicals, Inc. Copy Number Variations (CNVs) comprising the distal 1q region 1q43-q44 are associated with neurological impairments, structural brain disorder, and intellectual disability. Here, we report ...
-
Carless, M.; Glahn, D.; Johnson, M.; Curran, J.; Bozaoglu, K.; Dyer, T.; Winkler, A.; Cole, S.; Almasy, L.; MacCluer, J.; Duggirala, R.; Moses, Eric; Göring, H.; Blangero, J. (2011)Although disrupted in schizophrenia 1 (DISC1) has been implicated in many psychiatric disorders, including schizophrenia, bipolar disorder, schizoaffective disorder and major depression, its biological role in these ...