Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A methodology for geomechanical modelling of in situ recovery (ISR) in fractured hard rocks

    75433.pdf (1.003Mb)
    Access Status
    Open access
    Authors
    Sharifzadeh, Mostafa
    Aldrich, Chris
    Ericson, E.
    Sarmadivaleh, Mohammad
    Date
    2018
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Sharifzadeh, M. and Aldrich, C. and Ericson, E. and Sarmadivaleh, M. 2018. A methodology for geomechanical modelling of in situ recovery (ISR) in fractured hard rocks, in Zhao, Z. and Zhou, Y. and Shang, J. (eds), International Society for Rock Mechanics and Rock Engineering (ISRM) Symposium - 10th Asian Rock Mechanics Symposium (ARMS), Oct 29 – Nov 3, Doc ID ISRM-ARMS10-2018-081. Singapore: ARMS.
    Source Conference
    10th Asian Rock Mechanics Symposium (ARMS10)
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/75191
    Collection
    • Curtin Research Publications
    Abstract

    The extraction of geothermal energy, in situ minerals, liquid and gas hydrocarbons, and subsurface water are all constrained by the flow of fluid through fractured media in the earth’s crust, as is the viability of projects involving CO2 sequestration, nuclear and hazardous waste storage, hydrocarbon storage, and subsurface cavities. Subsurface fractures are the main fluid pathways as the matrix permeability is negligible in most rocks. In situ recovery (ISR) or in situ leaching (ISL), particularly in hard rock, poses some challenges currently. One of the main problems is the modelling of fluid flow in fractured rock masses, and this was the primary focus of this project. Modelling fluid flow in fractures can be done in many ways. The modelling showed that ISL in hard rock demonstrates potential. However, the modelling also exhibited the need for advancements in the fluid flow in fractures modelling area. In this paper comprehensive review of developed approaches for subsurface fracture mapping, processing and characterisation to build a fractured rock mass geometry and fluid flow simulation and mineral leachability along with examples were illustrated.

    Related items

    Showing items related by title, author, creator and subject.

    • Groundwater and underground excavations: From theory to practice
      Sharifzadeh, Mostafa; Javadi, M. (2017)
      © 2017 Taylor & Francis Group, London, UK. The hydraulic behavior and associated mechanical, physical, and chemical processes of geological formations and rock masses are one of the most important aspects of rock ...
    • Effects of fractures on seismic waves in poroelastic formations
      Brajanovski, Miroslav (2004)
      Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
    • Theoretical and numerical modelling of the effect of viscous and viscoelastic fluids on elastic properties of saturated rocks
      Makarynska, Dina (2010)
      Rock physics is an essential link connecting seismic data to the properties of rocks and fluids in the subsurface. One of the most fundamental questions of rock physics is how to model the effects of pore fluids on rock ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.