Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Model based evaluation of the electrochemical reaction sites in solid oxide fuel cell electrodes

    Access Status
    Fulltext not available
    Authors
    Periasamy, Vijay
    Tadé, Moses
    Shao, Zongping
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Vijay, P. and Tadé, M.O. and Shao, Z. 2019. Model based evaluation of the electrochemical reaction sites in solid oxide fuel cell electrodes. International Journal of Hydrogen Energy. 44 (16): pp. 8439-8459.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2019.02.030
    ISSN
    0360-3199
    Faculty
    Faculty of Science and Engineering
    School
    WASM: Minerals, Energy and Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150104365
    URI
    http://hdl.handle.net/20.500.11937/75469
    Collection
    • Curtin Research Publications
    Abstract

    © 2019 Hydrogen Energy Publications LLC The electrode microstructure plays an important role in determining the performance of the Solid Oxide Fuel Cells (SOFCs). The conventional SOFC electrodes are based on two kinds of particles, one electron conducting and another ion conducting. Over the years, electrodes with alternative microstructures have been proposed for performance enhancement based on the developments in materials and fabrication techniques. Analytical models for the microstructure offer the scope of quick evaluation of the effect of various microstructural parameters on important microstructural properties like the triple phase boundary densities. However, validation of these models in the light of the experimental data is seldom reported. In this work, the microstructural data derived from image-based reconstruction of the electrodes is used to calibrate and validate an analytical model for the conventional SOFC electrode microstructure revealing insights into the model's applicability. This model forms the basis for the models of other modified microstructures studied in this work. Designing of improved SOFC microstructures require an understanding of the effect of controllable parameters on the reaction sites. Model based evaluation of the electrochemical reaction sites in five different SOFC microstructures is performed in this work. The results and insights will enable the selection of microstructural parameters for tailoring the electrode microstructure to achieve improved performance.

    Related items

    Showing items related by title, author, creator and subject.

    • Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/e-/O2- mixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes
      Chen, D.; Zhang, Q.; Lu, L.; Periasamy, V.; Tade, M.; Shao, Zongping (2016)
      © 2015 Elsevier B.V. All rights reserved. H+ based solid oxide fuel cell (SOFC) composite cathodes are generally agreed to be of quite different relationships among the microstructure parameters, electrode properties and ...
    • Future prospects for the design of 'state-of-the-art' solid oxide fuel cells
      Mori, T.; Wepf, R.; Jiang, San Ping (2020)
      Solid oxide fuel cells (SOFCs) are the clean and efficient power sources for generating electricity from a variety of fuels (i.e. hydrogen, natural gas, and biogas) [1-3]. Also, SOFCs have no corrosive components and do ...
    • Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material
      Chen, D.; Wang, H.; Zhang, S.; Tade, Moses; Shao, Zongping; Chen, H. (2015)
      Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.