Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Geochemical modelling of petroleum well data from the Perth Basin. Implications for potential scaling during low enthalpy geothermal exploration from a hot sedimentary aquifer

    195742_195472.pdf (931.5Kb)
    Access Status
    Open access
    Authors
    Wolff-Boenisch, Domenik
    Evans, Katy
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wolff-Boenisch, Domenik and Evans, Katy. 2013. Geochemical modelling of petroleum well data from the Perth Basin. Implications for potential scaling during low enthalpy geothermal exploration from a hot sedimentary aquifer. Applied Geochemistry. 37: pp. 12-28.
    Source Title
    Applied Geochemistry
    DOI
    10.1016/j.apgeochem.2013.07.004
    ISSN
    0883-2927
    Remarks

    NOTICE: This is the author’s version of a work that was accepted for publication in Applied Geochemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Geochemistry, Vol. 37, (2013). doi: http://doi.org/10.1016/j.apgeochem.2013.07.004

    This project is part of an Australian Research Council (ARC) linkage project (#LP110100597)

    URI
    http://hdl.handle.net/20.500.11937/7576
    Collection
    • Curtin Research Publications
    Abstract

    Chemical analyses derived from petroleum exploration wells are notorious for their lack of key solute data and their potential to represent mixtures of reservoir and drilling fluids rather than pristine formation compositions. These drawbacks notwithstanding, they usually pose the only access to the reservoir geochemistry. Two literature protocols were applied to a dataset of incomplete major element analyses from 148 petroleum well samples from a database compilation of the Perth Basin whose deeper aquifers may serve as potential hot sedimentary aquifers for geothermal direct heat applications. The first protocol included a set of quality control criteria that reduced the number of relatively genuine formation well samples from the raw data pool by 71%. The remaining well analyses are invariably NaCl solutions of low to medium alkalinity and an ionic strength only occasionally reaching seawater salinity. The low amount of total dissolved solids indicates the absence of extended evaporites in the North Perth Basin and the prevalence of meteoric water infiltration and circulation at depths.The culled well samples underwent as a second protocol a forced equilibrium treatment to reconstruct in situ reservoir concentrations of missing elements (Si, Al, K), organic acid anions and non-carbonate alkalinity, and pH. The petroleum well samples were modelled to be in equilibrium with chalcedony (and kaolinite, albite, and paragonite) in the reservoir which yielded better convergence than using quartz instead. The derived formation temperatures correspond to geothermal gradients in the majority of cases between 25 and 35°C, in accord with literature findings. Those wells drilled to depth <1600 m returned questionably high geothermal gradients, an indication of incomplete mineral–fluid equilibrium. The measured pH (at ambient temperature) deviated in >90% of the wells from the calculated pH, either due to degassed CO2 or unaccounted acetate alkalinity. The wells were further modelled to be undersaturated with respect to amorphous silica and anhydrite and not likely to experience scaling of any of these two phases during geothermal production at depth <3800 m. For calcite, scaling predictions depend in how far bubbling and phase segregation can be suppressed. For the six different stratigraphies investigated here, calculated bubble points were low, indicating that pressurisation of the entire production and re-injection line seems viable.Based on a calcite growth model from the literature it is shown that, if bubble formation and concomitant carbonate flash scaling cannot be averted, the production well should be as shallow as the temperature requirements of the geothermal production allow for. This study promotes the application of readily accessible protocols and a scaling model to deep well samples that may otherwise appear to have little geochemical value because of the way the samples were collected and handled. After data culling and treatment, insights into the geochemistry and scaling potential of deep clastic formations of the North Perth Basin that may hold the potential for geothermal exploitation as hot sedimentary aquifers can be gained.

    Related items

    Showing items related by title, author, creator and subject.

    • Fluid migration and hydrocarbon charge history of the vulcan sub-basin
      Lisk, Mark (2012)
      A comprehensive examination of the hydrocarbon charge and formation water history of the central Vulcan Sub-basin, Timor Sea has been completed and a model developed to describe the evolution of the region’s petroleum ...
    • Evaluating the source, age, thermal history and palaeoenvironments of deposition of Australian and Western Canadian petroleum systems: compound specific stable isotopes coupled with inorganic trace elements
      Maslen, Ercin (2010)
      Petroleum geochemistry is an important scientific discipline used in the exploration and production of hydrocarbons. Petroleum geochemistry involves the applications of organic geochemistry to the study of origin, formation, ...
    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.