Ultra-steep spectrum emission in the merging galaxy cluster Abell 1914
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Remarks
Reproduced with permission from Astronomy & Astrophysics, © ESO
Collection
Abstract
A number of radio observations have revealed the presence of large synchrotron-emitting sources associated with the intra-cluster medium. There is strong observational evidence that the emitting particles have been (re-)accelerated by shocks and turbulence generated during merger events. The particles that are accelerated are thought to have higher initial energies than those in the thermal pool but the origin of such mildly relativistic particles remains uncertain and needs to be further investigated. The galaxy cluster Abell 1914 is a massive galaxy cluster in which X-ray observations show clear evidence of merging activity. We carried out radio observations of this cluster with the LOw Frequency ARay (LOFAR) at 150 MHz and the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. We also analysed Very Large Array (VLA) 1.4 GHz data, archival GMRT 325 MHz data, CFHT weak lensing data and Chandra observations. Our analysis shows that the ultra-steep spectrum source (4C38.39; α -2), previously thought to be part of a radio halo, is a distinct source with properties that are consistent with revived fossil plasma sources. Finally, we detect some diffuse emission to the west of the source 4C38.39 that could belong to a radio halo.
Related items
Showing items related by title, author, creator and subject.
-
Hoang, D.N.; Shimwell, T.W.; Van Weeren, R.J.; Brunetti, G.; Röttgering, H.J.A.; Andrade-Santos, F.; Botteon, A.; Brüggen, M.; Cassano, R.; Drabent, A.; De Gasperin, F.; Hoeft, M.; Intema, Huib ; Rafferty, D.A.; Shweta, A.; Stroe, A. (2019)Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic ...
-
De Gasperin, F.; Intema, Hubertus; Ridl, J.; Salvato, M.; Van Weeren, R.; Bonafede, A.; Greiner, J.; Cassano, R.; Brüggen, M. (2017)Context. Galaxy clusters undergo mergers that can generate extended radio sources called radio relics. Radio relics are the consequence of merger-induced shocks that propagate in the intra cluster medium (ICM). Aims. In ...
-
Bonafede, A.; Intema, Hubertus; Brüggen, M.; Girardi, M.; Nonino, M.; Kantharia, N.; Van Weeren, R.; Röttgering, H. (2014)Radio relics are diffuse radio sources observed in galaxy clusters, probably produced by shock acceleration during cluster-cluster mergers. Their large size, of the order of 1 Mpc, indicates that the emitting electrons ...