Effective Volumes of Waters of Crystallization: Ionic Systems
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
© 2019 American Chemical Society. We investigate the effective molecular volumes of waters of crystallization for 182 ionic materials as a function of their degree of hydration (the "effective" volume being the difference per water of hydration between the formula unit volumes of hydrates, including the parent anhydrate). We establish a median effective H2O molecular volume of 0.024(2) nm3, a value which is somewhat smaller than the ambient molecular volume of liquid water, 0.0299 nm3. The effective water of crystallization volumes increase slightly as the degree of hydration increases toward an apparent upper limit of about 18 water molecules, as is also observed in the behavior of the Gibbs energies of hydration. Our data include not only common ionic solids with inorganic anions but also organic anions and the zwitterionic l-amino acids; their effective volumes are commensurate with the values for the common ionic solids and thus also close to the molecular volume of liquid water. We provide two examples of the application of these principles to organic systems, yielding similar values for the effective volume of hydration. We demonstrate how these volumes may be used in the prediction of various thermodynamic values of hydrates and their parent anhydrates.
Related items
Showing items related by title, author, creator and subject.
-
Glasser, Leslie (2022)In an earlier simple “group contribution” method, molar volumes of organic and inorganic materials were predicted by summing optimised single atom values weighted according to the molecular formula. We here first revisit ...
-
Rojas González, Yenny V. (2011)The aim of this thesis is to investigate the formation process of tetrahydrofuran (THF) hydrates and natural gas hydrates, and the effect of kinetic hydrate inhibitors (KHIs) on the formation and growth of these hydrates. ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...