Decreased fibronectin production significantly contributes to dysregulated repair of asthmatic epithelium
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
Rationale: Damage to airway epitheliumis followed by deposition of extracellular matrix (ECM) and migration of adjacent epithelial cells. We have shown that epithelial cells from children with asthma fail to heal a wound in vitro. Objectives: To determine whether dysregulated ECM production by the epithelium plays a role in aberrant repair in asthma. Methods: Airway epithelial cells (AEC) from children with asthma (n = 36), healthy atopic control subjects (n = 23), and healthy nonatopic control subjects (n = 53) were investigated by microarray, gene expression and silencing, transcript regulation analysis, and ability to close mechanical wounds. Measurements and Main Results: Time to repair a mechanical wound in vitro by AEC from healthy and atopic children was not significantly different and both were faster than AEC from children with asthma. Microarray analysis revealed differential expression of multiple gene sets associated with repair and remodeling in asthmatic AEC. Fibronectin (FN) was the only ECM component whose expression was significantly lower in asthmatic AEC. Expression differences were verified by quantitative polymerase chain reaction and ELISA, and reduced FN expression persisted in asthmatic cells over passage. Silencing of FN expression in nonasthmatic AEC inhibited wound repair, whereas addition of FN to asthmatic AEC restored reparative capacity. Asthmatic AEC failed to synthesize FN in response to wounding or cytokine/growth factor stimulation. Exposure to 5′, 2′ deoxyazacytidine had no effect on FN expression and subsequent analysis of the FN promoter did not show evidence of DNA methylation. Conclusions: These data show that the reduced capacity of asthmatic epithelial cells to secrete FN is an important contributor to the dysregulated AEC repair observed in these cells.
Related items
Showing items related by title, author, creator and subject.
-
Stevens, P.T.; Kicic, Anthony ; Sutanto, E.N.; Knight, D.A.; Stick, S.M. (2008)Background: Asthma is associated with structural changes to airways such as extracellular matrix deposition and epithelial damage. Evidence suggests that asthmatic airway epithelial repair is abnormal and that elevated ...
-
Kicic, Anthony; Stevens, P.; Sutanto, E.; Kicic-Starcevich, E.; Ling, K.; Looi, K.; Martinovich, K.; Garratt, L.; Iosifidis, T.; Shaw, N.; Buckley, A.; Rigby, P.; Lannigan, F.; Knight, D.; Stick, S. (2016)© 2016 John Wiley & Sons Ltd Background: The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human ...
-
Ling, K.; Sutanto, E.; Iosifidis, T.; Kicic-Starcevich, E.; Looi, K.; Garratt, L.; Martinovich, K.; Lannigan, F.; Knight, D.; Stick, S.; Kicic, Anthony (2016)© 2016 Asian Pacific Society of Respirology Background and objective: Evidence into the role of TGF-ß1 in airway epithelial repair in asthma is still controversial. This study tested the hypothesis that the reduced TGF-ß1 ...