Show simple item record

dc.contributor.authorJafari, I.
dc.contributor.authorHaque, S.
dc.contributor.authorTogneri, R.
dc.contributor.authorNordholm, Sven
dc.identifier.citationJafari, I. and Haque, S. and Togneri, R. and Nordholm, S. 2013. Evaluations on underdetermined blind source separation in adverse environments using time-frequency masking. Eurasip Journal on Advances in Signal Processing. 2013 (162).

The successful implementation of speech processing systems in the real world depends on its ability to handle adverse acoustic conditions with undesirable factors such as room reverberation and background noise. In this study, an extension to the established multiple sensors degenerate unmixing estimation technique (MENUET) algorithm for blind source separation is proposed based on the fuzzy c-means clustering to yield improvements in separation ability for underdetermined situations using a nonlinear microphone array. However, rather than test the blind source separation ability solely on reverberant conditions, this paper extends this to include a variety of simulated and real-world noisy environments. Results reported encouraging separation ability and improved perceptual quality of the separated sources for such adverse conditions. Not only does this establish this proposed methodology as a credible improvement to the system, but also implies further applicability in areas such as noise suppression in adverse acoustic environments.

dc.titleEvaluations on underdetermined blind source separation in adverse environments using time-frequency masking
dc.typeJournal Article
dcterms.source.titleEurasip Journal on Advances in Signal Processing

This open access article is distributed under the Creative Commons license

curtin.departmentDepartment of Electrical and Computer Engineering
curtin.accessStatusOpen access

Files in this item


This item appears in the following Collection(s)

Show simple item record