Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
© 2019 by the authors. High-quality and long time-series soil moisture (SM) data are increasingly required for the Qinghai-Tibet Plateau (QTP) to more accurately and effectively assess climate change. In this study, to evaluate the accuracy and effectiveness of SM data, five passive microwave remotely sensed SM products are collected over the QTP, including those from the soil moisture active passive (SMAP), soil moisture and ocean salinity INRA-CESBIO (SMOS-IC), Fengyun-3B microwave radiation image (FY3B), and two SM products derived from the advanced microwave scanning radiometer 2 (AMSR2). The two AMSR2 products are generated by the land parameter retrieval model (LPRM) and the Japan Aerospace Exploration Agency (JAXA) algorithm, respectively. The SM products are evaluated through a two-stage data comparison method. The first stage is direct validation at the grid scale. Five SM products are compared with corresponding in situ measurements at five in situ networks, including Heihe, Naqu, Pali, Maqu, and Ngari. Another stage is indirect validation at the regional scale, where the uncertainties of the data are quantified by using a three-cornered hat (TCH) method. The results at the regional scale indicate that soil moisture is underestimated by JAXA and overestimated by LPRM, some noise is contained in temporal variations in SMOS-IC, and FY3B has relatively low absolute accuracy. The uncertainty of SMAP is the lowest among the five products over the entire QTP. In the SM map composed by five SM products with the lowest pixel-level uncertainty, 66.64% of the area is covered by SMAP (JAXA: 19.39%, FY3B: 10.83%, LPRM: 2.11%, and SMOS-IC: 1.03%). This study reveals some of the reasons for the different performances of these five SM products, mainly from the perspective of the parameterization schemes of their corresponding retrieval algorithms. Specifically, the parameterization configurations and corresponding input datasets, including the land-surface temperature, the vegetation optical depth, and the soil dielectric mixing model are analyzed and discussed. This study provides quantitative evidence to better understand the uncertainties of SM products and explain errors that originate from the retrieval algorithms.
Related items
Showing items related by title, author, creator and subject.
-
Chai, Soo See (2010)Soil moisture is a key variable that defines land surface-atmosphere (boundary layer) interactions, by contributing directly to the surface energy and water balance. Soil moisture values derived from remote sensing platforms ...
-
Khaki, M.; Awange, Joseph (2019)Constant monitoring of total water storage (TWS; surface, groundwater, and soil moisture) is essential for water management and policy decisions, especially due to the impacts of climate change and anthropogenic factors. ...
-
Liu, J.; Chai, L.; Dong, J.; Zheng, D.; Wigneron, J.P.; Liu, S.; Zhou, J.; Xu, T.; Yang, S.; Song, Yongze ; Qu, Y.; Lu, Z. (2021)© 2020 Elsevier Inc. Soil moisture (SM) is a fundamental environmental variable for characterizing climate, land surface and atmosphere. In recent years, several SM products have been developed based on remote sensing ...