Show simple item record

dc.contributor.authorReischl, Bernhard
dc.contributor.authorRaiteri, Paolo
dc.contributor.authorGale, Julian
dc.contributor.authorRohl, Andrew
dc.date.accessioned2019-12-02T04:59:04Z
dc.date.available2019-12-02T04:59:04Z
dc.date.issued2019
dc.identifier.citationReischl, B. and Raiteri, P. and Gale, J.D. and Rohl, A.L. 2019. Atomistic Simulation of Atomic Force Microscopy Imaging of Hydration Layers on Calcite, Dolomite, and Magnesite Surfaces. Journal of Physical Chemistry C. 123 (24): pp. 14985-14992.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/77069
dc.identifier.doi10.1021/acs.jpcc.9b00939
dc.description.abstract

© 2019 American Chemical Society. Advances in atomic force microscopy (AFM) in water have enabled the study of hydration layer structures on crystal surfaces, and in a recent study on dolomite (CaMg(CO3)2), chemical sensitivity was demonstrated by observing significant differences in force-distance curves over the calcium and magnesium ions in the surface. Here, we present atomistic molecular dynamics simulations of a hydration layer structure and dynamics on the (101 4) surfaces of dolomite, calcite (CaCO3), and magnesite (MgCO3), as well as simulations of AFM imaging on these three surfaces with a model silica tip. Our results confirm that it should be possible to distinguish between water molecules coordinating the calcium and magnesium ions in dolomite, and the details gleaned from the atomistic simulations enable us to clarify the underlying imaging mechanism in the AFM experiments.

dc.languageEnglish
dc.publisherAMER CHEMICAL SOC
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP140101776
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT130100463
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectMOLECULAR-DYNAMICS SIMULATIONS
dc.subjectAQUEOUS-SOLUTION
dc.subjectWATER
dc.subjectRESOLUTION
dc.subjectLIQUID
dc.subjectGROWTH
dc.subjectTEMPERATURE
dc.subjectCARBONATE
dc.subjectEXCHANGE
dc.subjectMODEL
dc.titleAtomistic Simulation of Atomic Force Microscopy Imaging of Hydration Layers on Calcite, Dolomite, and Magnesite Surfaces
dc.typeJournal Article
dcterms.source.volume123
dcterms.source.number24
dcterms.source.startPage14985
dcterms.source.endPage14992
dcterms.source.issn1932-7447
dcterms.source.titleJournal of Physical Chemistry C
dc.date.updated2019-12-02T04:59:04Z
curtin.note

ACS Author Choice terms of use are at: https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html

curtin.departmentDepartment of Chemistry
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.departmentCurtin Institute for Computation (CiC)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidRaiteri, Paolo [0000-0003-0692-0505]
curtin.contributor.orcidGale, Julian [0000-0001-9587-9457]
curtin.contributor.orcidRohl, Andrew [0000-0003-0038-2785]
curtin.contributor.researcheridRaiteri, Paolo [E-1465-2011]
curtin.contributor.researcheridReischl, Bernhard [D-2359-2013]
dcterms.source.eissn1932-7455
curtin.contributor.scopusauthoridRaiteri, Paolo [6602613407]
curtin.contributor.scopusauthoridReischl, Bernhard [31067528100]
curtin.contributor.scopusauthoridGale, Julian [7101993408]
curtin.contributor.scopusauthoridRohl, Andrew [7004407294]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/