Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents

    Access Status
    Fulltext not available
    Authors
    Foo, Henry
    Tan, Inn Shi
    Mohamed, A.R.
    Lee, K.T.
    Date
    2020
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Foo, H.C.Y. and Tan, I.S. and Mohamed, A.R. and Lee, K.T. 2020. Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents. Fuel. 260: 116354.
    Source Title
    Fuel
    DOI
    10.1016/j.fuel.2019.116354
    ISSN
    0016-2361
    Faculty
    Curtin International
    School
    Curtin International
    URI
    http://hdl.handle.net/20.500.11937/77218
    Collection
    • Curtin Research Publications
    Abstract

    © 2019 Elsevier Ltd On the quest of finding ideal sorbent for post-combustion CO2 capture, calcium-based sorbent seems to have the potential, but often it cannot sustain its reactivity, especially after repeated cycle of sorption. This work aims to unravel the controlling factors in carbonation reaction and thermal-induced deformation of skeleton pore network that limits the CO2 absorptivity of calcium-based sorbent. Through precise measurement of CO2 absorption activity using TGA/DSC and a series of characterization, this study paves the way for the development of next-generation CaO sorbent that has high CO2 uptake capacity and thermal stability. Key findings include CaO particles with severe point defects contribute to fast CO2 absorption activity. The transformation from CaCO3 phase to CaO phase from organic precursor is 4 times higher than the inorganic precursor. Decomposition of calcium formate is thermally stable regardless of calcination temperature. Citrate-based structure precursor is able to produce homogeneous nanosized CaO particle. Shifting of reaction controlling regime from fast carbonation reaction to diffusion limited stage happened at Thiele modulus of 1.35. Lastly, first stage of fast carbonation reaction will take place at CaO sorbent's surface with proximate zero activation energy and second stage of slow carbonation reaction is controlled by high activation energy of ion diffusion behavior in CaCO3 ionic crystals at product diffusion layer. Future research direction can focus on reproducing long periodical citrate-like structural precursor using sol-gel method to mimic the behavior of calcium formate and calcium citrate to form nano-sized CaO particles with thermally stable crystal structure.

    Related items

    Showing items related by title, author, creator and subject.

    • Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents
      Wang, J.; Zhang, Y.; Han, Lina; Chang, L.; Bao, W. (2013)
      Two iron oxide based sorbents, TG-1 and TG-F, with high desulfurization efficiency, were selected for simultaneous removal of H2S and Hg from simulated syngas. Our evaluation tests were carried out using a fixed bed reactor ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.