Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Enhanced electrochemical performance and stability of (La,Sr)MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration

    Access Status
    Fulltext not available
    Authors
    Chen, Kongfa
    Ai, Na
    Jiang, San Ping
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Chen, K. and Ai, N. and Jiang, S.P. 2012. Enhanced electrochemical performance and stability of (La,Sr)MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration. International Journal of Hydrogen Energy. 37 (2): pp. 1301-1310.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2011.10.015
    ISSN
    0360-3199
    URI
    http://hdl.handle.net/20.500.11937/7745
    Collection
    • Curtin Research Publications
    Abstract

    Palladium-impregnated or infiltrated La0.8Sr0.2MnO3–Gd0.2Ce0.8O1.9 (LSM-GDC) composites are studied as the oxygen electrodes (anodes) for the hydrogen production in solid oxide electrolysis cells (SOECs). The incorporation of small amount of Pd nanoparticles leads to a substantial increase in the electrocatalytic activity and stability of the LSM-GDC oxygen electrodes. The electrode polarization resistance (RE) at 800 °C on a 0.2 mg cm−2 Pd-infiltrated LSM-GDC electrode is 0.13 Ω cm2, significantly smaller than 0.42 Ω cm2 for the reaction on the pure LSM-GDC electrodes. The overpotential loss is also substantially reduced after the Pd infiltration; at an anodic overpotential 50 mV and 800 °C, the current increases from 0.15 A cm−2 for the pure LSM-GDC anode to 0.47 A cm−2 on a 0.3 mg cm−2 Pd-infiltrated LSM-GDC. The infiltrated Pd nanoparticles enhance the stability of the LSM-GDC oxygen electrodes and are most effective in the promotion of the diffusion, exchange and combination processes of oxygen species on the surface of LSM-GDC particles, leading to the increase in the oxygen evolution reaction rate.

    Related items

    Showing items related by title, author, creator and subject.

    • Performance and structural stability of Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 nanostructured oxygen electrodes of solid oxide electrolysis cells
      Chen, Kongfa; Ai, Na; Jiang, San Ping (2014)
      Effect of Gd0.2Ce0.8O1.9 (GDC) infiltration on the performance and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes on Y2O3-stabilized ZrO2 (YSZ) electrolyte has been studied in detail under solid oxide electrolysis ...
    • Performance and stability of nano-structured Pd and Pd0.95M0.05 (M = Mn, Co, Ce, and Gd) infiltrated Y2O3-ZrO2 oxygen electrodes of solid oxide electrolysis cells
      Ai, Na; Chen, Kongfa; Liu, Shaomin; Jiang, San Ping (2013)
      Nano-structured Pd infiltrated and Pd0.95M0.05 (M = Mn, Co, Ce, and Gd) co-infiltrated Y2O3-ZrO2 (YSZ) electrodes are studied as the oxygen electrodes of solid oxide electrolysis cells (SOECs). The infiltrated Pd-YSZ ...
    • Advanced Symmetric Solid Oxide Fuel Cell with an Infiltrated K2NiF4-Type La2NiO4 Electrode
      Yang, Guangming; Su, Chao; Ran, Ran; Tade, Moses; Shao, Zongping (2014)
      Advanced symmetric solid oxide fuel cells (SOFCs) with a reducible electrode were proposed. Specifically, La2NiO4 + La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) [or Sm0.2Ce0.8O1.9 (SDC)] composite electrodes were successfully ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.