Show simple item record

dc.contributor.authorCao, Zhanglong
dc.contributor.authorBryant, David
dc.contributor.authorParry, Matthew
dc.date.accessioned2020-02-26T05:18:34Z
dc.date.available2020-02-26T05:18:34Z
dc.date.issued2018
dc.identifier.citationCao, Z. and Bryant, D. and Parry, M. 2018. Adaptive Sequential MCMC for Combined State and Parameter Estimation. arXiv.org. 1803.07734: pp. 1-44.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/78086
dc.description.abstract

In the case of a linear state space model, we implement an MCMC sampler with two phases. In the learning phase, a self-tuning sampler is used to learn the parameter mean and covariance structure. In the estimation phase, the parameter mean and covariance structure informs the proposed mechanism and is also used in a delayed-acceptance algorithm. Information on the resulting state of the system is given by a Gaussian mixture. In on-line mode, the algorithm is adaptive and uses a sliding window approach to accelerate sampling speed and to maintain appropriate acceptance rates. We apply the algorithm to joined state and parameter estimation in the case of irregularly sampled GPS time series data.

dc.subjectstat.AP
dc.subjectstat.AP
dc.titleAdaptive Sequential MCMC for Combined State and Parameter Estimation
dc.typeJournal Article
dcterms.source.volume1803.07734
dcterms.source.startPage1
dcterms.source.endPage44
dcterms.source.titlearXiv.org
dc.date.updated2020-02-26T05:18:14Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusFulltext not available
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidCao, Zhanglong [0000-0001-6667-9392]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record