Show simple item record

dc.contributor.authorCao, Zhanglong
dc.contributor.authorBryant, David
dc.contributor.authorMolteno, Tim
dc.contributor.authorFox, Colin
dc.contributor.authorParry, Matthew
dc.date.accessioned2020-02-26T05:18:56Z
dc.date.available2020-02-26T05:18:56Z
dc.date.issued2018
dc.identifier.citationCao, Z. and Bryant, D. and Molteno, T. and Fox, C. and Parry, M. 2018. Adaptive Smoothing Spline for Trajectory Reconstruction. arXiv.org. 1803.07184: pp. 1-25.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/78087
dc.description.abstract

Trajectory reconstruction is the process of inferring the path of a moving object between successive observations. In this paper, we propose a smoothing spline -- which we name the V-spline -- that incorporates position and velocity information and a penalty term that controls acceleration. We introduce a particular adaptive V-spline designed to control the impact of irregularly sampled observations and noisy velocity measurements. A cross-validation scheme for estimating the V-spline parameters is given and we detail the performance of the V-spline on four particularly challenging test datasets. Finally, an application of the V-spline to vehicle trajectory reconstruction in two dimensions is given, in which the penalty term is allowed to further depend on known operational characteristics of the vehicle.

dc.relation.urihttps://arxiv.org/abs/1803.07184
dc.subjectstat.ME
dc.subjectstat.ME
dc.titleAdaptive Smoothing Spline for Trajectory Reconstruction
dc.typeJournal Article
dcterms.source.volume1803.07184
dcterms.source.startPage1
dcterms.source.endPage25
dcterms.source.titlearXiv.org
dc.date.updated2020-02-26T05:18:46Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidCao, Zhanglong [0000-0001-6667-9392]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record