Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development

    Access Status
    Fulltext not available
    Authors
    Jabari Kohpaei, Ahmad
    Sathasivan, Arumugam
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jabari Kohpaei, Ahmad and Sathasivan, Arumugam. 2011. Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development. Chemical Engineering Journal. 171 (1): pp. 232-241.
    Source Title
    Chemical Engineering Journal
    DOI
    10.1016/j.cej.2011.03.034
    ISSN
    13858947
    School
    Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/7854
    Collection
    • Curtin Research Publications
    Abstract

    All distributed drinking water receives some form of disinfection and a minimum disinfectant residual should be maintained at the customer tap. The most popular disinfectant is chlorine. Chlorine reacts with compounds in water and hence decays. Description of chlorine decay is often difficult, due to a complex set of reactions and an initial fast reaction followed by a slower reaction. Before any attempt could be made to understand the decay characteristics in the distribution system, chlorine decay in bulk water has to be correctly described. The parallel second order reaction model was found to be one of the most suitable models for this purpose. However, widespread use of this model is hindered by its complexity, most importantly the non-existence of an analytical solution. In this paper, an analytical solution for this model was developed by initially assuming that the ratio (α) of slow and fast reaction rate coefficients is small. The estimated parameters and the chlorine residuals predicted by the numerical analysis and the proposed solution were compared for the chlorine decay data sets obtained from the literature as well as laboratory analysis. The results showed that the proposed analytical solution was very accurate for the prediction of chlorine decay behaviour in all samples.

    Related items

    Showing items related by title, author, creator and subject.

    • Development of an analytical solution for the parallel second order reaction scheme for chlorine decay modelling
      Jabari Kohpaei, Ahmad (2010)
      Chlorine is broadly used for water disinfection at the final stage of water treatment because of its high performance to inactivate pathogenic microorganisms, its lower cost compared to other well-known disinfectants and ...
    • Optimisation of chlorine dosing for water disribution system using model-based predictive control
      Muslim, Abrar (2007)
      An ideal drinking water distribution system (DWDS) must supply safe drinking water with free chlorine residual (FCR) in the form of HOCI and OCIֿ at a required concentration level. Meanwhile the FCR is consumed in the ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.