Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Partial Ambiguity Resolution for Ground and Space-Based Applications in a GPS+Galileo scenario: A simulation study

    Access Status
    Fulltext not available
    Authors
    Nardo, A.
    Li, B.
    Teunissen, Peter
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Nardo, A. and Li, B. and Teunissen, P. 2015. Partial Ambiguity Resolution for Ground and Space-Based Applications in a GPS+Galileo scenario: A simulation study. Advances in Space Research. 57 (1): pp. 30-45.
    Source Title
    Advances in Space Research
    DOI
    10.1016/j.asr.2015.09.002
    ISSN
    0273-1177
    School
    Department of Spatial Sciences
    URI
    http://hdl.handle.net/20.500.11937/7883
    Collection
    • Curtin Research Publications
    Abstract

    Integer Ambiguity Resolution (IAR) is the key to fast and precise GNSS positioning. The proper diagnostic metric for successful IAR is provided by the ambiguity success rate being the probability of correct integer estimation. In this contribution we analyse the performance of different GPS+Galileo models in terms of number of epochs needed to reach a pre-determined success rate, for various ground and space-based applications. The simulation-based controlled model environment enables us to gain insight into the factors contributing to the ambiguity resolution strength of the different GPS+Galileo models. Different scenarios of modernized GPS+Galileo are studied, encompassing the long baseline ground case as well as the medium dynamics case (airplane) and the space-based Low Earth Orbiter (LEO) case. In our analyses of these models the capabilities of partial ambiguity resolution (PAR) are demonstrated and compared to the limitations of full ambiguity resolution (FAR). The results show that PAR is generally a more efficient way than FAR to reduce the time needed to achieve centimetre-level positioning precision. For long single baselines, PAR can achieve time reductions of fifty percent to achieve such precision levels, while for multiple baselines it even becomes more effective, reaching reductions up to eighty percent for four station networks. For a LEO, the rapidly changing observation geometry does not even allow FAR, while PAR is then still possible for both dual- and triple-frequency scenarios. With the triple-frequency GPS+Galileo model the availability of precise positioning improves by fifteen percent with respect to the dual-frequency scenario.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluation of ambiguity success rates based on multi-frequency GPS and Galileo
      Arora, Balwinder Singh (2012)
      The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
    • Integer ambiguity Resolution in Multi-constellation GNSS for LEO Satellites POD
      Wang, Kan; El-Mowafy, Ahmed ; Yang, Xuhai (2023)
      Precise Orbit Determination (POD) of Low Earth Orbit (LEO) satellites is essential for future LEO-augmented Positioning, Navigation and Timing (PNT) service based on the use of Global Navigation Satellite Systems (GNSS) ...
    • Instantaneous GPS-Galileo attitude determination: single-frequency performance
      Nadarajah, Nandakumaran; Teunissen, Peter; Raziq, N. (2013)
      New and modernized global navigation satellite systems (GNSSs) are paving the way for an increasing number of applications in positioning, navigation, and timing (PNT). A combined GNSS constellation will significantly ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.