Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Bayesian hierarchical modelling of rainfall extremes

    Access Status
    Fulltext not available
    Authors
    Lehmann, E.
    Phatak, Aloke
    Soltyk, S.
    Chia, J.
    Lau, R.
    Palmer, M.
    Date
    2013
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Lehmann, E. and Phatak, A. and Soltyk, S. and Chia, J. and Lau, R. and Palmer, M. 2013. Bayesian hierarchical modelling of rainfall extremes, in Piantadosi, J. and Anderssen, R. and Boland, J. (ed), Proceedings of the 20th International Congress on Modelling and Simulation (MODSIM), Dec 1-6 2013, pp. 2806-2812. Adelaide: Modelling & Simulation Society Australia & New Zealand.
    Source Title
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013)
    Source Conference
    20th International Congress on Modelling and Simulation (MODSIM)
    Additional URLs
    http://www.mssanz.org.au/modsim2013/L12/lehmann.pdf
    School
    Department of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/7894
    Collection
    • Curtin Research Publications
    Abstract

    Understanding weather and climate extremes is important for assessing, and adapting to, the potential impacts of climate change. The design of hydraulic structures such as dams, drainage and sewers, for instance, relies in part on accurate information regarding patterns of extreme rainfall occurring at various locations and at different durations. Deriving this kind of information is challenging from a statistical viewpoint because a lot of information must be extracted from very little data. In this paper, we describe the use of a spatial Bayesian hierarchical model (BHM) for characterising rainfall extremes over a region of interest, using historical records of precipitation data from a network of rainfall stations. The rainfall extremes are assumed to have a generalised extreme value (GEV) distribution, with the shape, scale and location parameters representing the underlying variables of the BHM’s process layer. These parameters are modelled as a linear regression over spatial covariates (latitude and longitude) with additive spatially-correlated random process. This spatial process leads to more precise estimates of rainfall extremes at gauged locations, and also allows the inference of parameters at ungauged locations. Furthermore, it also mitigates the limitations imposed by short rainfall records in that it allows the model to “borrow strength” from neighbouring sites, thereby reducing the uncertainty at both gauged and ungauged locations. Making use of r-largest order statistics in the data layer further allows the integration of multiple yearly rainfall amounts instead of the annual maximum only.The proposed BHM uses a parametric representation that links the GEV scale parameter obtained for different accumulation durations. This approach leads to two additional process parameters, and allows the use of pluviometer data accumulated over a range of durations, thereby also increasing the amount of data available for inference. A main advantage of the Bayesian approach is that measures of variability arise naturally from the framework. These uncertainty measures represent information of crucial importance for a subsequent use of the estimated quantities. We demonstrate this Bayesian approach using a dataset of pluviometer measurements recorded at 252 meteorological stations located on the Central Coast of New South Wales, Australia. For each station, the rainfall data is accumulated over 12 different durations ranging from 5 minutes to 72 hours, from which the two largest annual maxima are selected. Exploratory analyses of this rainfall dataset are carried out for various purposes, including: (i) basic quality control (removal of erroneous data values), and (ii) to provide insight into the relevance of the model structure and associated assumptions. The proposed model is fitted using Markov chain Monte Carlo (MCMC) simulation, with several types of diagnostics plots used to assess the convergence properties of the resulting chains.We present numerical examples of estimated parameters resulting from the fitted model (regression coefficients, sill and range of the spatial correlation function) together with confidence intervals. Further results from this study are provided by calculating intensity–duration–frequency (IDF) curves for a few sites of interest (both gauged and ungauged) with associated estimates of uncertainty. These results are shown to be in good agreement with station-based maximum likelihood estimates, while achieving smoother curves with tighter uncertainty bands.

    Related items

    Showing items related by title, author, creator and subject.

    • A max-stable process model for rainfall extremes at different accumulation durations
      Stephenson, A.; Lehmann, E.; Phatak, Aloke (2016)
      A common existing approach to modeling rainfall extremes employs a spatial Bayesian hierarchical model, where latent Gaussian processes are specified on distributional parameters in order to pool spatial information. The ...
    • Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change
      Lehmann, E.; Phatak, Aloke; Stephenson, A.; Lau, R. (2016)
      This paper describes a statistical modelling framework for the characterisation of rainfall extremes over a region of interest. Using a Bayesian hierarchical approach, the data are assumed to follow the generalised extreme ...
    • Developing completion criteria for rehabilitation areas on arid and semi-arid mine sites in Western Australia
      Brearley, Darren (2003)
      Continued expansion of the gold and nickel mining industry in Western Australia during recent years has led to disturbance of larger areas and the generation of increasing volumes of waste rock. Mine operators are obligated ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.