Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry

    187157_187157.pdf (302.5Kb)
    Access Status
    Open access
    Authors
    Allard, Sebastien
    Charrois, Jeffrey
    Joll, Cynthia
    Heitz, Anna
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Allard, Sebastien and Charrois, Jeffrey W. A. and Joll, Cynthia A. and Heitz, Anna. 2012. Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry. Journal of Chromatography A. 1238: pp. 15-21.
    Source Title
    Journal of Chromatography A
    DOI
    10.1016/j.chroma.2012.03.020
    ISSN
    0021-9673
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Chromatography A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Chromatography A, Volume 1238, May 2012, Pages 15-21, http://dx.doi.org/10.1016/j.chroma.2012.03.020

    URI
    http://hdl.handle.net/20.500.11937/7898
    Collection
    • Curtin Research Publications
    Abstract

    Trihalomethanes are predominantly formed during disinfection of water via reactions of the oxidant with natural organic matter. Even though chlorinated and brominated trihalomethanes are the most widespread organic contaminants in drinking water, when iodide is present in raw water iodinated trihalomethanes can also be formed. The formation of iodinated trihalomethanes can lead to taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated or chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. The analysis of 10 trihalomethanes in water samples in a single run is challenging because the iodinated trihalomethanes are found at very low concentrations (ng/L range), while the regulated chlorinated and brominated trihalomethanes are present at much higher concentrations (above μg/L). An automated headspace solid-phase microextraction technique, with a programmed temperature vaporizer inlet coupled with gas chromatography-mass spectrometry, was developed for routine analysis of 10 trihalomethanes i.e. bromo-, chloro- and iodo-trihalomethanes in water samples. The carboxen/polydimethylsiloxane/divinylbenzene fiber was found to be the most suitable. The optimization, linearity range, accuracy and precision of the method are discussed. The limits of detection range from 1 ng/L to 20 ng/L for iodoform and chloroform, respectively. Matrix effects in treated groundwater, surfacewater, seawater, and secondary wastewater were investigated and it was shown that the method is suitable for the analysis of trace levels of iodinated trihalomethanes in a wide range of waters.The method developed in the present study has the advantage of being rapid, simple and sensitive. A survey conducted throughout various process stages in an advanced water recycling plant showed the presence of iodinated trihalomethanes at ng/L levels.

    Related items

    Showing items related by title, author, creator and subject.

    • Influence of bromide on iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters
      Criquet, J.; Allard, Sebastian; Salhi, E.; Joll, C.; Von Gunten, Urs; Heitz, A. (2012)
      The kinetics of iodate formation during chlorination of iodide-containing waters is a key factor in the formation of iodoorganic compounds. In contrast to bromate, iodate is considered to be non-toxic. A strategy to reduce ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Ozonation of iodide-containing waters: Selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs.
      Allard, Sebastien; Nottle, C.; Chan, W.; Joll, Cynthia; Von Gunten, Urs (2013)
      The presence of iodinated disinfection by-products (I-DBPs) in drinking water poses a potential health concern since it has been shown that I-DBPs are generally more genotoxic and cytotoxic than their chlorinated and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.