A solid/fluid substitution scheme constrained by pore-scale numerical simulations
Access Status
Authors
Date
2020Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Remarks
This article has been accepted for publication in Geophysical Journal International. © 2020 Yongyang Sun, Boris Gurevich, Stanislav Glubokovskikh, Maxim Lebedev, Andrew Squelch, Christoph Arns, Junxin Guo. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
Estimating the effects of pore filling material on the elastic moduli or velocities of porous and fractured rocks attracts widespread attention. This effect can be modelled by a recently proposed triple-porosity scheme, which quantifies this effect from parameters of the pressure dependency of the elastic properties of the dry rock. This scheme divides total porosity into three parts: compliant, intermediate and stiff. Each type of pores is assumed to be spheroidal and characterized by a single aspect ratio. However, the implementation of this model requires the asymptotic values of the elastic moduli at much higher pressures where only non-closable pores remain open. Those pressures are beyond the capacity of most rock physics laboratories and can even crush typical sandstone samples. Experimental data at such pressures are usually unavailable. To address this issue, we introduce pore-scale numerical simulations in conjunction with effective medium theories (EMT) to compute the asymptotic values directly from the microtomographic images. This workflow reduces the uncertainty of model predictions on the geometric information of stiff pores and strengthens the predictive power and usefulness of the model without any adjustable parameters. Applying this to a Bentheim sandstone fully filled with liquid and solid octadecane gives a reasonable match between model predictions and laboratory measurements. This success verifies the accuracy and applicability of the model and indicates its potential in further exploitation and characterization of heavy oil reservoirs and other similar reservoirs.
Related items
Showing items related by title, author, creator and subject.
-
Grochau, Marcos Hexsel (2009)Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
-
Makarynska, Dina (2010)Rock physics is an essential link connecting seismic data to the properties of rocks and fluids in the subsurface. One of the most fundamental questions of rock physics is how to model the effects of pore fluids on rock ...
-
Sun, Y.; Gurevich, Boris; Lebedev, Maxim; Glubokovskikh, Stanislav; Mikhaltsevitch, Vassili; Guo, J. (2018)Quantifying the effects of pore-filling materials on elastic properties of porous rocks is of considerable interest in geophysical practice. For rocks saturated with fluids, the Gassmann equation is proved effective in ...