Show simple item record

dc.contributor.authorLing, S.
dc.contributor.authorJiang, F.
dc.contributor.authorChan, Kit Yan
dc.contributor.authorNguyen, H.
dc.contributor.editorChin-Teng Lin and Yau-Huang Kuo
dc.date.accessioned2017-01-30T11:03:38Z
dc.date.available2017-01-30T11:03:38Z
dc.date.created2012-02-09T20:00:50Z
dc.date.issued2011
dc.identifier.citationLing, S.H. and Jiang, F. and Chan, K.Y. and Nguyen, H.T. 2011. Permutation flow shop scheduling: fuzzy particle swarm optimization approach, in IEEE International Conference on Fuzzy Systems (FUZZ 2011), Jun 27-30 2011. Taipei, Taiwan: IEEE.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/7953
dc.identifier.doi10.1109/FUZZY.2011.6007320
dc.description.abstract

A fuzzy particle swarm optimization (PSO) for the minimization of makespan in permutation flow shop scheduling problem is presented in this paper. In the proposed fuzzy PSO, the inertia weight of PSO and the control parameter of the cross-mutated operation are determined by a set of fuzzy rules. To escape the local optimum, cross-mutated operation is introduced. In order to make PSO suitable for solving permutation flow shop scheduling problem, a roulette wheel mechanism is proposed to convert the continuous position values of particles to job permutations. Meanwhile, a swap-based local search for scheduling problem is designed for the local exploration on a discrete job permutation space. Flow shop benchmark functions are employed to evaluate the performance of the fuzzy PSO for flow shop scheduling problems and the results indicate that the algorithm performs better compared with existing hybrid PSO algorithms.

dc.publisherIEEE
dc.subjectFlow shop scheduling
dc.subjectFuzzy logic
dc.subjectParticle swarm optimization
dc.titlePermutation flow shop scheduling: fuzzy particle swarm optimization approach
dc.typeConference Paper
dcterms.source.startPage572
dcterms.source.endPage578
dcterms.source.issn1098-7584
dcterms.source.titleProceedings of the IEEE international conference on fuzzy systems (FUZZ 2011)
dcterms.source.seriesProceedings of the IEEE international conference on fuzzy systems (FUZZ 2011)
dcterms.source.conferenceIEEE International Conference on Fuzzy Systems (FUZZ 2011)
dcterms.source.conference-start-dateJun 27 2011
dcterms.source.conferencelocationTaipei, Taiwan
dcterms.source.placeTaiwan
curtin.departmentDigital Ecosystems and Business Intelligence Institute (DEBII)
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record